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ABSTRACT OF DISSERTATION

APPLICATION OF SWARM AND REINFORCEMENT
LEARNING TECHNIQUES TO REQUIREMENTS
TRACING

Today, software has become deeply woven into the fabric of our lives. The quality of the software
we depend on needs to be ensured at every phase of the Software Development Life Cycle
(SDLC). An analyst uses the requirements engineering process to gather and analyze system
requirements in the early stages of the SDLC. An undetected problem at the beginning of the
project can carry all the way through to the deployed product.

The Requirements Traceability Matrix (RTM) serves as a tool to demonstrate how requirements
are addressed by the design and implementation elements throughout the entire software
development lifecycle. Creating an RTM matrix by hand is an arduous task. Manual generation
of an RTM can be an error prone process as well.

As the size of the requirements and design document collection grows, it becomes more
challenging to ensure proper coverage of the requirements by the design elements, i.e., assure that
every requirement is addressed by at least one design element. The techniques used by the
existing requirements tracing tools take into account only the content of the documents to
establish possible links. We expect that if we take into account the relative order of the text
around the common terms within the inspected documents, we may discover candidate links with
a higher accuracy.

The aim of this research is to demonstrate how we can apply machine learning algorithms to
software requirements engineering problems. This work addresses the problem of requirements
tracing by viewing it in light of the Ant Colony Optimization (ACO) algorithm and a
reinforcement learning algorithm. By treating the documents as the starting (nest) and ending
points (sugar piles) of a path and the terms used in the documents as connecting nodes, a possible
link can be established and strengthened by attracting more agents (ants) onto a path between the
two documents by using pheromone deposits. The results of the work show that ACO and RL can
successfully establish links between two sets of documents.

KEYWORDS: Software Engineering, Requirements Engineering, Traceability,
Swarms, Reinforcement Learning
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1. Introduction

Today, software has become deeply woven into the fabric of our lives. Software controls
a pump meter at a gas station, manages concurrent display of maps and conversation on a
cell phone, and controls the ascent of rockets into space. Software malfunctions can cause
disasters both small and large. For example, a malfunction n a rocket’s control software
may cause the rocket to disintegrate in pieces like the Ariane 5 [1]. For these reasons, the
quality of the software we depend on needs to be ensured at every phase of the Software
Development Life Cycle (SDLC).

The SDLC consists of four main phases: Planning, Analysis, Design, and Implementation
and Testing [2]. The planning phase aims to address justifications for the software
system, feasibility studies, risk management, etc. During the analysis phase, the
requirements for the future software system are elicited, gathered, negotiated, and
validated. When the SDLC enters the design phase, these requirements are transformed
mnto design elements describng how the required functionality is achieved. The
implementation phase encompasses the development and test of the designed elements.

1.1 Requirements Tracing

An analyst uses the requirements engineering process to gather and analyze system
requirements. During this process, the analyst clarifies customer needs, conducts
feasibility studies, presents and specifies a solution, and cross validates the specifications.
In a large-scale project, it is quite possible to miss or misinterpret some of the identified
requirements. In his book, Patterns of Software System Failure and Success, Jones says
that more than 80% of the failures in large-scale mission-critical projects are attributed to
undetected problems in the early phases of the SDLC [3]. An undetected problem at the
beginning of the project can carry all the way through to the deployed product; this is
called a latent defect or latent error.

Such undetected problems can have the additional effect of lengthening a project’s
timeline and expanding the development budget. Boehm and Basili point out that as the
software life cycle progresses, the cost of fixing or changing software increases. They
claim that finding and fixing a software problem after delivery is often one hundred times
more expensive than finding and fixing it during the requirements and design phase [4].
Boehm’s curve, shown below, illustrates a simple idea: create a proper set of
requirements accompanied by good and detailed design or face the strong possibility of
paying a higher price later [5].
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Figure 1.1 Boehm curve

To address and mitigate the possibility of costly latent errors, an analyst should collect,
note, and track the software requirements during the early phases of the SDLC.

Two sets of documents are typically created in the early phases of any software project:
the Software Requirements Specification (SRS) and the Software Design Description
(SDD). These two sets of documents capture the mformation needed to properly identify
the required functionality (SRS) and then define how the software should be structured to
provide the functionality required (SDD).

According to the Software Engmneering Body of Knowledge (SWEBOK), a software
requirement is “a property which must be exhibited by software developed or adapted to
solve a particular problem [6].” These requirements are captured i the Software
Requirements Specification (SRS). This document is defined by IEEE Standard 1012-
1998 as “documentation of the essential requirements (ie., functions, performance,
design constraints, and attributes) of the software and its external mterfaces. The software
requirements are derived from the system specification [6].”

The Software Design Description (SDD) is a “representation of software created to
facilitate analysis, planning, implementation, and decision making. The software design
description is used as a medum for communicating software design information, and
may be thought of as a blueprint or model of the system [7].”

1.2 Requirements Traceability Matrix

The process of Validation and Verification (V&V) uses artifacts created during early
phases of the Software Development Life Cycle (SDLC). Among other things, V&V
ensures that the every requirement specification element is adequately reflected by at
least one design description element.

The Requirements Traceability Matrix (RTM) serves as a tool to demonstrate how
requirements are addressed by the design and implementation elements throughout the
entire software development lifecycle.
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The activity of buiding an RTM is a part of the requirements tracing process. The
process mvolves seven steps [8]:

Identify each requirement and design element.

Assign a unique identifier to each requirement and design element.

For each requirement, locate all matching design elements.

For each design element, locate a parent element in the collection of requirements.
Determine if each requirement has been completely satisfied.

Prepare a report that presents the traceability matrix.

Prepare a summary report that expresses the level of traceability of the document
pair.

Nounkwd—

Creatng an RTM matrix by hand is an arduous task. For each combination of
requirements and design documents, an analyst must open two documents (the
requirement document and the design document) using a word processor application and
then search for key terms and phrases that may be relevant or important for establishing a
possible logical link between two documents.

For example, an analyst opens a requirement document from the requirements collection,
analyzes the content, and notes main points. Then the analyst opens a document from the
design elements collection and searches for key ideas, terms, or phrases in the opened
design document. Here, we make an assumption that all documents are text based. This
process of opening, analyzing, and searching within each document is repeated for every
pair of requirement and design documents.

An RTM provides a view of the requirements to design elements mapping in a matrix
form. Each row corresponds to a requirement. Each column corresponds to a design
element. Requirement elements addressed by the design elements are marked in an
appropriate row and column. Figure 1.2 displays a sample RTM for Requirements to
Design Traceability.

The following are sample requirements (R.1 through R.4) and design elements (D.1
through D.4) corresponding to Figure 1.2.

R.1 The image viewer will allow the viewing of images.

R.2 The system shall mark images checked for printing.

R.3 The system shall allow printing image sections.

R.4 The system shall provide information about displayed images.

D.1 Annotation overlay to indicate marked images.

D.2 Alist to present the indexes and information about the images.

D.3 A user mterface to display images and respective information and controls to print
images.

D.4 A cropper tool to select sections of an image.

www.manaraa.com



D.1 D.2 D.3 D.4
R.1 X
R.2 X X
R.3 X
R.4 X

Figure 1.2. RTM requirements vs. design elements.

We can see that requirements R1 and R2 are addressed by design element D3. The
requirements state that the system needs to be able to view and print images. These
requirements are addressed by the design description of a user interface to view and print
the images.

As the example shows, in addition to being labor intensive, a manual generation of an
RTM can be an error prone process as well. The manual process requires a human analyst
to cross check every pair of documents. Luckily, there are automatic tools designed to
alleviate the process of matching requirements artifacts with design elements [9][10].

1.3 Problem Statement

As the size of the requirements and design document collection grows, it becomes more
challenging to ensure proper coverage of the requirements by the design elements, ie.
assure that every requirement is addressed by at least one design element. The techniques
used by the existing requirements tracing tools take into account only the content of the
documents to establish possible links. We expect that if we take into account the relative
order of the text around the common terms within the inspected documents, we may
discover candidate links with a higher accuracy.

The aim of this research is to demonstrate how we can apply machine learning algorithms
to software requirements engineering problems. This work addresses the problem of
requirements tracing by viewing it i light of the Ant Colony Optimization (ACO)
algorithm [11] and a remnforcement learning algorithm [12]. By treating the documents as
the starting (nest) and ending points (sugar piles) of a path and the terms used in the
documents as connecting nodes, a possible link can be established and strengthened by
attracting more agents (ants) onto a path between the two documents by using pheromone
deposits. The results of the work show that ACO and RL can successfully establish links
between two sets of documents [13].

1.4 Research Thesis

The research demonstrates two approaches, one based on the Ant Colony Optimization
algorithm and the other is based on Reinforcement Learning, to identify candidate links
between two collections of documents: the requirements and the design documents.

The requirements tracing tool is based on the existing tool Retro.NET [9]. Our tool

establishes the candidate links by applying the Ant Colony Optimization algorithm and
Reinforcement Learning.
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1.5 Scope of Research

The research is aimed at English textual software requirements and design documents.

An assumption is made that requirements and design documents are presented as two
separate collections.

1.6 Research Contributions

This research makes the following contributions: establish candidate links based on the
common textual segments between documents; and emphasize and demonstrate the
benefit of treating documents as collection of phrases, rather than “bag of words.” As
consequence of this approach, the suggested method establishes links of a higher quality
between textual documents. The quality of the links can be evaluated through the ratio of
the number of correctly suggested links vs. the total number of suggested links. The
higher the ratio, the better is the quality of the links. A correct list of links between the
document pair ensures higher efficiency for the human analyst performing the tracing
process.

The remainder of the dissertation is organized as follows: Chapter 2 provides necessary
background mnformation. Chapter 2 consists of sections on Requirements Traceability,
Information Retrieval, Swarm Intelligence, and Reinforcement Learning. Chapter 3
surveys the related work in the field. Chapter 4 discusses pheromone swarm technique
and the results obtained through this technique. Chapter 5 presents Reinforcement
Learning algorithm applied to the requirements tracing problem. Chapter 6 contains the
dissertation conclusions and directions for possible future work.
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2 Background
To understand the proposed ideas using the swarm technique and the reinforcement
learning for requirements tracing, it is necessary to understand the basic concepts in the
following areas: information retrieval (IR), requirements tracing, swarm intelligence, and
reinforcement learning (RL).

2.1 Information Retrieval

Information retrieval (IR) is the process of finding documents relevant to an information
request within a collection of documents, usually a search query. In a typical scenario, the
documents returned in response to a query are sorted by weight relevance. The relevance
weight is a computer calculated numeric value indicating how closely the returned
document matches the requesting query; the higher the weight, the more relevant the
document is to the query. From a user perspective, a document is relevant if the user
considers the document relevant to the original query. The user may not agree with the
high weight relevance of every returned document.

The effectiveness and accuracy of the IR method can be evaluated through recall and
precision measurements. Recall is evaluated as the total number of relevant retrieved
documents divided by the total number of relevant documents in the whole collection.

#of relevant retrieved
Recall = 2.1.1

#of relevant in collection

Precision 1s evaluated as the total number of relevant retrieved documents divided by the
total number of retrieved documents:

.. #of relevant retrieved
Precision = - 2.1.2
#of retrieved

Precision and recall can be combined mto a weighted harmonic mean:

(8> +1)P+R

2 2.1.3
F= FPPHR  here B c[0,0).

When B° = 1, precision and recall are balanced in the measure, this is called F, measure.

When f* =2, recall has more weight than precision, this is called F, measure.

Higher recall and precision measurements indicate higher completeness and accuracy of
the retrieved data.
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A secondary measurement such as Mean Average Precision (MAP) measures “the quality
across the recall levels” [14]. The higher the MAP, the closer the true links are to the top
of the candidate link list. For #; in a set of textual artifacts H={h_,,..., h.,}, a subset of

relevant documents {d_,,..., d., ) toand Liv € L={(d h)|sim(d,h)} a subset of true links
ranked by relevance, MAP is evaluated as follows:

(LI
MAPH) = — » — » Precision(L ). 2.1.4
2w (L)

A high value of MAP implies that true links are ranked higher in the list of the returned
results.

2.2 IR Methods

There are several IR methods. The following two methods are the most common:
e Boolean
e Vector space

In the rest of this section, we introduce these techniques.

2.2.1 Boolean Retrieval

In the Boolean Retrieval model, a query is constructed i the form of a Boolean
expression of terms. In this model, each document is treated as a collection of
terms/words. One way to determine the presence of a word in a document is to scan the
documents linearly. To facilitate the search, the incidence matrix is constructed. The
incidence matrix indicates the presence of a term in a document; one (1) indicates the
document contains the term, zero (0) indicates the document does not contain the term.

Al .txt A2 .txt C2.txt C3.txt D3.txt F1.txt
Personal 1 0 0 0 0 0
Distribution 1 1 0 0 0 0
List 1 1 1 0 1 0
Email 0 1 1 1 0 1
System 0 0 0 1 1 0
Store 1 0 0 0 1 1

Figure 2.1 A term document incidence matrix.

Examining Figure 2.1, a query of Personal AND Distribution AND List AND Store, we
will take the vectors for these terms and do a bitwise AND:

100000 AND 110000 AND 111010 AND 100011 AND = 100000

The result for this query is document Al.txt. Al.txt is the only document containing the
term Personal.
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The limitation of Boolean Retrieval can easily be discovered by querying a collection of
1 million documents with 100,000 distinct terms. It would be hard to fit a matrix of 106 *
10° = 10" bits in the operating memory of a computer.

To overcome the limitations of the incidence matrix for a huge collection of documents,
the inverted index has become a major concept in the field of information retrieval [15].
All of the distinct terms across the documents in the collection comprise a dictionary. For
each term in the dictionary, the mverted matrix maintains a list of documents indicating
where the term is encountered as shown in Figure 2.2. The list of document occurrences
is called a posting.

Personal 1 > Al.txt
Distribution 2
> Al A2.txt
List 4
P Altxt A2.txt C2.txt D3.txt
Email 4 Pl Al.txt C2.txt C3.txt Fl.txt
System 2 P C3.txt D3.txt

Store
3 P Al.txt D3.txt Fl.txt

Figure 2.2 Inverted index

During the construction of the mverted index, the document frequency of the term is
stored along with the document postings. The document frequency indicates how many
documents in the collection contain the term.

Even though the Boolean Retrieval model does not utilize the document frequency count,
there are other IR methods that use the document frequency to calculate the relevance
weight for query results. One such method is the Vector Space model with Term
Frequency Inverted Document Frequency (TF-IDF) weighting.

2.2.2 Vector Space TF —-IDF

Unlike the Boolean Retrieval, free text queries do not use any connecting search
operators such as AND, OR, or NOT. The Vector Space Model (VSM) supports
document searches for these types of queries by representing the queries and documents
as multi-dimensional vectors. The multi-dimensional space is constructed using all terms
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in the dictionary, using each term as an orthogonal measurement in the multidimensional
space.

To measure the similarity between two vectors in the multi-dimensional space, the VSM
uses the Euclidean cosine similarity between the vectors. The size of the vector space is
equal to the size of the dictionary (each term represents a dimension). If 4 is a document,

then we can denote a vector derived from the document as ¥ (d). The vector
coordinates can be represented as:

V(d) ={vivs..val,
where v; = 0 if the term 7 is not present in the document.

Cosine similarity in the Euclidean multi-dimensional space is estimated by the following
formula:

Son (7,70 = D7
vy,

where 171 . [72 is a dot product of two vectors. The dot product between two vectors X
and y is estimated as:

N
- 222
Xey=2xy,

i=1

The Euclidian length |?c| is estimated as:

XN 2 223
1%

The effect of 171 1S to normalize 17 to a unit vector. The unit vector is obtaned from a
— 1
7,

vector in N-dimensional space that has the same orientation, but its length is equal to 1.

When we consider a document as a vector in the multi-dimensional space represented by
dictionary terms, we can treat the term frequency as a coordinate corresponding to the
term. For example, if the documents Al.txt, Cl.txt, and F1.txt consist of the following
text, respectively:

“Al. The system shall have an address book available to store contacts. The
address book shall store contacts in groups as well.”

“Cl. The system shall support a text-based interface to compose mail, use mail
addresses from an address book, and attach mail stored in folders.”

9
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“F1. The system shall support the ability for users to create a folder to store mail.
The system shall support uploading mail that is stored in folders.”

The dictionary shown i Figure 2.3 presents the terms and therr respective counts for
documents Al, C1, and F1. The column TF stands for term frequency. TF is the total
count of the term i the collection of documents.

—_—
[S—
p—

the
system
shall
have

an
address
book
available
to

store
contact
group
well
text-based
mterface
compose
use

mail
attach
support
ability
user
folder
store
upload
compose

(= el o Ll el Keol Kad B ROR] el Rl Bl el Kool Kol fau) Ken) Kend Ren) ol | (S ) Keol e N o Bl @)
== (NN =N =] = OO OO OO OO DN N o]
»—amwwr—dr—al\)r—awha_ﬂhamr—dr—ar—[\)r—ﬂhamr—r—ar—L}].J;th

OO QOO OO O | == = [ = [ NN = [ = [ B = D 3>

Figure 2.3 Dictionary terms with TF count for documents Al, C1, and FI1.

In our example, if we treat the term frequencies as coordinates in the multi-dimensional
space, the vector corresponding to the documents Al, C1, and F1 will look like this:

V(Aah=@,1,2,1,1,2,2,1,1,2,1,1,1,0,0,0,0,0,0,0,0,0,0,0, 0, 0)
V(hH=(1,1,1,0,0,2,1,0,0,0,0,0,0,1,1,1,1,3,1,0,0,0,1, 1,0, 0)
V F1)=(2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,1,1,2,2, 1, 1)

10
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A cursory look at the three vectors shows common terms among the vectors. The
problem with this approach is that all terms are treated equally. The term’s importance is
not considered when assessing a query. For example, the terms “the,” “system,” and
“shall” are encountered i all documents. Thus, the documents may have these terms in
common, but may not be related. Frequently used words such as the articles “a,” “an,”
and “the” and prepositions “to,” “for,” and “from” are removed from consideration. The
removed terms belong to a stopword list. The stopword list contains all terms that should

be extracted and ignored before analyzing the documents.

The stopword preprocessing helps to reduce the amount of noise coming from the
frequent terms that do not carry much information. The importance of a term in the
collection can be evaluated though the term’s relative frequency. The document
frequency, df, , is the total number of the terms in a document. The inverse document
frequency (idf) of a term ¢, is estimated as follows:

idf =log Y, 224

df,

where N is the total number of documents in the collection.

The idf for a frequent term is low and is high for the rare term. The tf-idf promotes the
mportance of a term in a document using the composite weight of the term frequency
and inverse document frequency:

(Eidf g = th o x idf 223

Thus, the importance of a term in a document is high for a rare term (relative to the whole
collection). The importance weight is amplified by term frequency in the document.

2.3Requirements Tracing

In the introduction, we covered the importance of requirements tracing, the RTM
provides the results of the tracing activity. Requirements tracing plays an important role
in the project life cycle because it enables analysts “to describe and follow the life of a
requirement, in both a forward and a backward direction, through the whole system’s life
cycle [16].”

As the software project evolves, the project documentation is augmented by use cases.
The use cases typically yield the software requirements. Sometimes, the use cases are
used as design artifacts. In this case the requirements are interpreted though the use cases.
When the requirements serve as a basis for layout of design elements, the testing ensures
the correctness of the produced code from the source requirements. To trace the
requirements _forward, we trace the use cases to the requirements specification or

11
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requirements specifications to the design elements. To trace backwards, we might trace
from the use cases back to the requirements or from design elements to the requirements.

Figure 2.4 and

Figure 2.5 show the forward and backward tracing, respectively.

D1.txt

DA .txt

DFC1.txt

DAF1.txt

Design Elements

TALI1.txt

TC-A2.txt

TC6-A.txt

T-F1.txt

Test Cases

Figure 2.4 Forward tracing from design elements to test cases.

Al.txt

A2.txt

Cl.txt

F1.txt

Requiremetns

UC-ALBI .txt

UC-ALB2.txt

UC-ALX3.txt

UC-F1.txt

Use Cases

Figure 2.5 Backward tracing from use cases to requirements.

As the result of tracing, we establish candidate links between two collections of
documents. A candidate link is a logical connection between two documents; if a

12
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document TALI1.txt (Figure 2.6) addresses ideas mentioned in document DAI1.txt, we say
there is a lnk between DAIl.txt and TALIl.txt. For example, if n the forward tracing
from design elements to test cases (Figure 2.4) there is no link coming from element
DAF1.txt, we can immediately assess that our test cases do not fully address all of the
design elements.

TALI1.txt

D1 .txt —
\><
DAL .txt > TC-A2.txt

\

DFC1.txt » TC6-A.txt
\\‘ T—Fl_tXt

DAF1.txt

Design Elements Test Cases

Figure 2.6 Candidate links.One design element is missing a link to test cases.

The TF-IDF method creates a list of candidate links between the two document
collections with the “weight” assigned to the links for each suggested pair of documents.
The weight represents a “similarity” between the documents. The higher the weight the
“closer” the documents are to each other. The closeness is evaluated by having similar
terms. Also, the value of the “weight” is used as a filter. Links below a certain threshold
are cut off from consideration. A low value of the weight implies that the documents
share only a few terms; a higher value of the weight indicates that documents share many
terms. By lowering the threshold, we create a large list of candidate links. The documents
in such links may share just a few terms, but have very little meaning in common. The
low threshold value pulls many document pairs for consideration; hence we may obtain a
higher recall, but the precision of such candidate links will suffer: only a small fraction of
the document pairs can be identified as true links. With a higher threshold value, we
obtan more precise results, but not all possible true links are identified. Thus the results
of the TF-IDF method may range from a very low recall and high precision to a high
recall and low precision.

Another shortcoming of the TF-IDF method is that it treats a textual document as a bag of
words. The relative order of the terms is not important for the TF-IDF method. We
propose a method that identifies common segments between the documents; thus shifting
the focus onto treating documents as collections of phrases. One of the objectives of the
proposed research is to discover the candidate links between two sets of software

13
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requirement documents automatically by using swarm intelligence. Another objective is
to provide candidate links that do not have either high recall and low precision or low
recall and high precision. We want to have our recall and precision values come a step
closer to the ideal location in the precision recall graph — top right corner, ie., high recall
and high precision.

2.4Swarm Intelligence

Insects such as bees and ants, small and simple individually, can accomplish tremendous
tasks n a collective effort. Swarm intelligence describes computational algorithms that
mspire computer scientists by the fact that the insects’ achievements and actions are all
accomplished through local peer-to-peer interactions. A number of scientists have studied
the behavior of ants in foraging for food. Jean-Louis Deneubourg described the self-
organizing behavior of ant colonies, where ants used pheromone communication [17].
The idea of using pheromone trails as a method of communicating through the
environment is at the heart of the ant colony optimization (ACO) algorithm [11]. This
algorithm has been used in a number of computer science applications, such as the
traveling salesperson problem, and has applicability to requirements engneering
problems.

Consider a graph G = (V, E), where V is a set of vertices and E is a matrix representing
connections between the vertices. For each edge, (i, j), between the nodes i and j in the
graph, we assign a pheromone value z;. In the mitial step, the ACO will assign each edge
in the graph a zero pheromone value, 7;(0). Also, a group of ants k = 1,...,n is positioned
at the source node.

For every iteration, each ant builds a path to the destmnation node. Also, at every node,
each ant decides the next link to take. If ant k& is at node i, the probability p; ) of

selecting the next node j € N/, which belongs to a set of nodes adjacent to i [11], is:

T (t
O jen:
2.7, )
jeN-k
py)y=1" 24.1
0 i jeN;
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where N¥ is the set of nodes accessible for agent k from the node i. If node j is not

accessible for ant k& from the node i, the probability p,’; (®=0. In the formula above, a is a

parameter which amplifies the attractiveness of the pheromone trail. Large values of o
attrbute importance to pheromone.

2.5Reinforcement Learning

The reinforcement learning (RL) model is a machine learning technique dealing with the
actions an agent needs to take in order to maximize collected rewards as a result of these
actions. The agents n RL learn the actions to maximize the long term, discounted,
expected reward by interacting with the environment.

The RL model can be presented as (S, 4,{Psx},y, R), where

- S'is aset of environment states

- A are actions available to agents

- Py is a state transition distribution, ie., the probability of transitioning into
next state s’ by taking an action @ while being at state s and Y, P,,(s") =1

- yis adiscount factor

- R is a reward function, R:S XA XS > R, R is domain of real numbers.
Reward is a scalar value associated with transitioning into states.

In reinforcement learning (RL), agents probe the environment though a discrete sequence
of steps and actions over time ¢, where ¢t = 0, 1, 2, 3 etc. At each step ¢, the agent evaluates
the state s, € §, where § is a set of all possible states. Based on the state s, the agent
selects an action a; € A(s;), where A is a set of possible actions available to the agent in
state s;.. As the result of the action taken at the moment ¢, ie. t-th time step, the agent
gains reward r:+;, and moves to the state s.; [12]. Figure 2.7 displays the interaction
between the agent and environment [12].

* (e

state s

Figure 2.7 The interaction of the agent and the environment in reinforcement learning.

As shown i, Figure 2.7 the agent receives the state s; as an input and produces action a;
as an output. The mapping of the states mto actions is determmed by a policy z;. Since
each state s, can present a set of possible actions A(s;), the policy m; denotes the
probabilities of selecting one of the possible actions determmned by the state s, The
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mapping of states to actions is represented as z(s,a), the probability of selecting action
a=a;, when state s=s;, The agent’s goal is to maximize the total rewards acquired in the
long run by choosing actions according to the distribution specified by 7.

The reward the agent collects depends upon the actions it takes and their probabilistic
effects. To estimate the desirability of a state, some RL algorithms use the notion of value
function. Formally, the value function is represented as:

V™(s) = Ef{Rs, = s} = E. {00 V" rirss ISe = 53, (2.5.1)

where R; is a function of the reward sequence [12]. The value E_{} is the expected
reward value given to the agent that follows the policy z. The discount coeflicient y €
[0, 1] signifies preference for the immediate or future rewards. If y approaches 0, the
immediate rewards are assigned the most value. When vy approaches 1, the future
rewards and immediate rewards are valued more nearly equally.

Bellman’s equation [12] provides another way to express the value of a state s:

Vi(s) = ZTC(S, a)z P&[RE +yVT(s)] (2.5.2)

a

where, PZ., is the probability of reaching state s from s if action a is taken; RE. is the

reward associated with reaching state s from s by taking action a.

A policy that maximizes expected return for all states is called an optimal policy and is
denoted z". Formally, #' > = _if and only if, V" (s) = V™(s) for all s € S. Alternatively,
we can define V" as:

V'(s) = max, V(s) (2.5.3)

There exist at least one policy and its expected return is better than or equal to that of 7"
for all the states, Bellman’s theorem [12]. If there are several policies, i.e., more than one
polic*y, that allow agents to reach maximal expected return, we still denote these policies
as 7 .

One way to determine an optimal policy is to use the value iteration algorithm [12]. The
value iteration algorithm is an iterative backup operation. The algorithm combines an

immediate policy improvement for the current state and the values of states reachable
from the current state in the following form:

Vg1 (8) =max, Yo PE[RE + vV, ()] (2.5.4)

where Pd.and R bear the same meaning as defined in equation (2.5.2). The value of
state s is maximized across all actions a available at s. The pseudo code for the value
iteration algorithm [12]is listed in Fig. 2.8.
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Initialize V(s) =0, forall s €S
Repeat
A<0
Foreachs €S
Ve« V(s)
V(S) «max, Zs‘ Pss‘ [Rss‘ + VV(S‘)]
A max(A, lv — V()]
Until A< € (e a small positive number)
Output a deterministic policy, n, such that

n(s) = argmax, Z PLIRL +yV(s)]
N

Figure 2.8 Value Iteration reinforcement learning pseudo code.

To apply the reinforcement learning approach to the traceability problem, we constructed
a search space, ie., an environment. After the states, actions, and rewards are established,
the value iteration algorithm is executed. The value iteration algorithm outputs actions for
each state. The actions established for the states determine the navigation heuristics for
the agents.

The idea of building a path from the source node to the destination node resonates well
with the activity of establishing candidate links in the requirements traceability process.
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3 Related Work

3.1 Requirements Traceability

In this section, we address traceabilty lnk generation, swarm techniques, and
reinforcement learning. As mentioned earlier, candidate link generation is concerned with
retrieving the relevant elements from a given textual artifact pair. The candidate link list
is reviewed by an analyst to determine if each link is a true relevant link or not.

In 1994, Gotel and Finkelstem identified a lack of automatic tools to conduct
requirements traceability activities [18]. Since then, much work has been done to remedy
this problem by applying information retrieval techniques to the candidate link generation
problem.  Antoniol et al. [19] used the vector space model (VSM) and a probabilistic
model to recover traceability from source code modules to man pages and functional
requirements. In a probabilistic model the documents are ranked based on the probability
of being relevant to a query. The authors used a Bayesian classifier “to score the
sequence of mnemonics extracted from each source code components against the models.
[19] ” With VSM, they achieved the highest recall (100%) for the Albergate dataset by
setting the threshold to 10% of the highest similarity measure. However, they only
achieved a precision of 11.98%.

In the VSM and probabilistic models, links are established between documents using
common weighted terms. Specifically, terms are assigned weights based on term
frequency and term count n the document collection. The swarm technique differs m that
links between documents are established by discovering and promoting the importance of
common phrases in the inspected documents. The reinforcement learning method
discovers candidate links by optimizing the search heuristics (Chapter 5).

Another perspective on requirements traceabilty is goal-centric traceability, as
demonstrated by Huang et al. [20]. Huang proposed a model to establish links among
subsets of artifacts that an analyst considered as covering a certain objective. For
example, the artifaicts may describe the security features of a system. The authors
demonstrated how goal-centric traceability keeps track of the traces between goals and
documents. The model provided change impact analysis through automated traceability.
In our approach, we use the swarm technique instead of the goal-centric traceability
model. This was done since the swarm technique does not require an initial classification
of the documents as related to a particular goal or objective. This was also done because
Huang’s approach potentially increases the possibility of creating too many traces
between documents in the subset. To manage this possibility, we looked at a scoped
approach to traceability management as described by Lago et al. [21]. The method
described by Lago et al takes on the traceability task by focusing on selected activities,
rather than by using an automatic “trace all” approach. Similar to the goal-centric
traceabilty in Huang’s work, Lago’s method requires an initial selection of artifacts
related to the target activities. Unlike our swarm technique, the scoped approach traces
only selected items.
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Panis [22] states that 26 engneers at Teradyne expressed therr preference to see the
traced content of a requirement rather than see a simple identifier. He found that
engineers place the most value on traceability mnformation when they are creating
documents.

Further, according to Egyed et al. [23], an analyst takes one to two minutes, on average,
to manually establish traces from code to requirements. They also found that recovery of
method traces takes 3 - 6 times longer than recovering class traces (also manually). The
swarm technique provides a method to generate trace links in an automatic fashion.
While this time reduction is significant, there are still additional issues to deal with in
order to mmprove the quality of the candidate links generated. Specifically, we had to
select a context to establish the trace links. To do this, we first looked at work done by
DeLlucia et al. [24].

DelLucia et al. used a traceability recovery tool based on Latent Semantic Indexing (LSI).
By mtroducing categorization, the DeLucia et al. reached a precision of 25% with 90%
recall. Without categorization and at the same 90% level of recall, the precision reached
only 17%. Marcus and Maletic [25] applied the LSI technique to the same Albergate
dataset used by Antoniol et al. The LSI technique identifies the patterns and concepts
contained n a collection of text by establishing associations among terms occurring in
similar contexts [24]. Marcus and Maletic achieved a precision of 16.38% at 100% recall
using this technique.

In effect, the LSI technique uses a document as the context. The swarm technique differs
by establishing candidate links between two collections of documents based on similar
terms occurring in the neighborhood of common terms; the neighborhood of a linking
term acts as a “context.”

Swarm techniques and the RL method further expand neighborhood terms by using a
thesaurus. This approach discovers links through synonymous terms. The value of using a
thesaurus was validated by Hayes, Dekhtyar, and Osborne [26] when they applied VSM
with a thesaurus to a dataset and compared this method to manual tracing and to a
proprietary tool. They achieved a higher precision using manual tracing compared to the
proprietary tool: 46% vs. 38.8%. Also the manual tracing scored better in terms of
precision than the VSM + thesaurus method: 46% vs. 40.7%. At the same time, VSM +
thesaurus method outperformed the other two approaches in terms of recall, (85.4%
compared to 43.9% for manual and 63.4% for the proprietary tool). Thus, the use of the
thesaurus expanded the term base. As a result, additional links were discovered between
textual chunks expressing similar ideas and phrases using different terms.

By using phrasing as a way to improve the precision of automated IR traces, Zou et al
[27] obtained improvements of almost 20% for one dataset when examining the top 5%
of the returned candidate links. Their work focuses on establishing “similar” areas
between documents. The similar areas are established through shared common terms in
the neighborhood of the linking terms. In this regard, “similar neighborhoods” i our
work resemble the phrasing technique used by Zou etal. [27].
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Phrasing is similar to the idea of ‘lexical affinities’ as expressed by Maarek et al. [28] and
by N and Easterbrook [29]. Ther research considered two word units within a single
sentence. The ‘lexical affinities” Limit the neighborhood window to a maximum of five
terms apart. In other words, terms occurring relatively close to each other in two
documents form related phrases. The related phrases n two documents can be viewed as
common segments, creating a logical link between the documents.

This idea of small common segments between two documents appears to be a valid
starting point for investigating the swarm behavior on the traceability problem. Unlike
the ‘lexical affinities’ method, the swarm technique considers terms that may cross the
boundaries of a sentence. Furthermore, the swarm technique does not require any
knowledge about the part of speech for a given term, whereas the ‘lexical affinities’
method deals with two-word phrases: noun verb pairs.

Zisman and Spanoudakis [30] examined ways to generate traceability links by applying
rules to artifacts that had been tagged with the parts of speech. In their work, the authors
established four types of traceability relationships based on the grammatical tagging of
the textual artifacts. The proposed swarm technique does not perform such fine-grained
classification of traceability links. The swarm agents simply identify the links based on
the common vocabulary base with the purpose of simplifying the algorithm and the
search heuristics.

The effect of the vocabulary base on traceability accuracy (using both artifacts versus just
the low-level artifact to build the vocabulary) was studied by Sundaramet et al. [31]; in
the study, they found support for using only the low-level artifact.

In general, the above techniques have been able to achieve excellent recall [26] [31]
[32], but often at the expense of precision that is only borderline acceptable at best. The
work described in this dissertation differs in that it uses a “greedy algorithm” approach to
generate the candidate link lists with the goal of increasing precision.

A greedy algorithm will potentially increase precision because it selects the optimal link
to follow, which is optimal from the agent’s point of view. This algorithm also does not
require tagging parts of speech or phrasing, simplifying the process of building links and
reducing the amount of time required to conduct searches.

To evaluate the performance of this method, we use traditional IR measurements: recall,
precision, F harmonics, mean average precision (MAP), as well as several other
secondary measurements.

Zou et al. [27] use average precision (AP) to measure the internal quality of candidate
link Lists. AP looks at a number of recall levels such as 10% recall, 20% recall, etc., and
averages the precision changes of each, thus returning only one value. For similar
reasons, we prefer mean average precision (MAP) to AP. It has the advantage of
returning a single value, but it does not require one to set recall levels, and it does not
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require interpolation. The swarm method also uses secondary measurement, such as
MAP, to evaluate the performance of the algorithm.

3.2 PSO and ACO Techniques

There are other researchers who have applied the particle swarm optimization (PSO)
algorithm to analyze textual documents. PSO is a direct method that searches for an
optimal solution in a search space. The mamn characteristic of the PSO algorithm is that
each member of the swarm adjusts its behavior based on the information obtained from
its neighbors in the search space. The swarm agents are modeled to have a specific
position and velocity in a search space. The agents iteratively evaluate a fitness function
where the agents’ position and velocity are used as mput parameters. The agents operate
on the premise of their own ‘“best” position and the swarm’s and the neighbors’ “best”
position, where “best” implies a point in the search space where the fitness function has
reached some optimal value [33].

To test this approach, Merwe and Engelbrecht applied data clustering using PSO on six
different classification problems [34]. Four hundred vectors were randomly created in a
two-dimensional space from the Wisconsin breast cancer database, with the objective of
classifying the data as representing benign or malignant tumors. Another PSO clustering
work was carried out by Cui, Potok, and Palathingal on textual documents [35].

Also, PSO was used to rank the results of IR methods. Diaz-Aviles and Nejdl proposed a
swarm ranking method for IR using the particle swarm optimization on the benchmark
database LETOR. The swarm first undertook a learning phase to rank IR results and
attempted to reduce over-fitting [36].

In the above work, the researchers modeled the search space as a hyperspace of words or
terms. The fitness function was, in some form or fashion, a FEuclidian distance in the
vector space of terms between the multidimensional points. The vector space model treats
each term as a dimension of the multidimensional space. For example, for data clustering,
Merwe and Engelbrecht [34] used a variation of a distance vector to randomly seed
centroid vectors, e.g., to seed some starting points in the search space. When compared
to the PSO method described above, a drawback of a VSM approach discussed earlier
becomes apparent. Namely, it treats terms as separate dimensions of the search space.
Each new term increases the vector space’s dimension size and hence increases the
complexity and number of necessary computations.

To overcome this weakness in the VSM approach, Diaz-Aviles and Nejdl [36] used
training (learning to rank IR results) for a collection of queries and the resulting retrieved
documents. They used a training set, as well as a validation set, to attempt to reduce
over-fitting. They proposed the method of SwarmRanking to optimize the combmation
of the content and links. This method used mean average precision (MAP) as the fitness
function to evaluate the results. They found that the approach significantly outperformed
standard approaches.

Our method is similar in that we use a swarm algorithm to rank retrieved low-level
requirement elements that may be relevant to a given high-level requirement. Our
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approach differs in that we do not take a semi- or supervised learning approach, and thus
do not require a training set.

Aghdam, Ghasem-Aghaee, and Basiri used ACO to select text features [37]. Azzag and
Guinot [38] used ant colony optimization (ACO) to cluster data in trees. In theirr work,
([371,[38]), the authors mentioned that due to “the probabilistic behavior of artificial ants
they can produce quality results without any prior knowledge of data structures.” In our
work, randomness is considered a positive factor as well, since it allows ants to explore
the search space of the document collection.

Further, in the ACO algorithm, the agents do not have any prior knowledge of the text
features. The proposed swarm method also does not involve supervised learning, and the
agents do not have a predetermined knowledge of the space they traverse.

In typical ACO, the pheromone deposited by the ants evaporates over time. The
evaporation enables a dynamic behavior to take place in the search process. A path with
more pheromone deposits becomes more attractive to the ants. The more ants that
traverse the path, the more attractive the path becomes.

The proposed swarm method uses pheromone deposits on the links and terms to influence
the path selection behavior of a swarm agent. The pheromone deposits on the links and
terms influence the path selection behavior of a swarm agent. Note, that there is no
predetermined knowledge of the traversed space. The search and discover phase of the
algorithm is like “random roulette” and it is greedy. The term and document frequencies
of the text collection are used as guiding heuristics for the agent’s behavior. Technically,
the algorithm still resembles an ant colony, but it is not as intelligent and cooperative as
ACO. In our approach, the swarm agents are given freedom to operate on their own,
determining the search path based on the environment, ie., term frequency, weight, etc.

The next logical step from the pheromone swarm technique is to “learn” the search space
environment. The RL method maps out the search space and “learns” the environment. As
a result of this learning, our RL method equips the agents with the search space traversal
heuristics to discover candidate links (Chapter 5).

Abraham and Ramos [39] explored ACO clustering with linear genetic programming.
Their model of clustering web documents was based on the behavior of ants forming
cemetery clusters (deposits of dead ant bodies) within the colony’s territory. From the
computational point of view, the main factors that inflienced the behavior of artificial
ants are the number of objects in the neighborhood and therr similarities. The proposed
swarm technique also builds the behavior of an artificial ant based on the similarities
between neighborhoods i the documents.

Li and Lam used ant-like agents to generate test threads from unified model language
(UML) diagrams [40]. The authors used three-dimensional UML diagrams as directed

graphs to provide a search space for artificial ants. The swarm technique also creates a
three-layered graph as a search space for the ants.
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Another mteresting aspect of Li and Lam’s work is a limited “energy” supply for the ants.
This way the ants can avoid looping indefinitely while traversing the graph. In our work,
we limit the length of a path that the swarm agent traverses; the length of a path is equal
to two — from a high level document to a low level though a common term. In other
words, the ant can only move from a high level document to a low level document
through a common term before it finishes its journey. The three layer topology of the
search space mmplies the agent cannot travel more than 3 hops. One extra hop is permitted
to jump to a synonym if it is chosen.

3.3 Machine Learning Techniques

In the past several years, the interest n machine learning techniques applied to
requirements engineering has been growing. Machine learning techniques can help
establish some knowledge or rules from requirements engineering artifacts [41],[42].

Background knowledge from a set of examples of the system description and system’s
properties is derived by a method proposed by d’Avila-Garces et al. [42]. The method
uses a machine learning technique, inductive learning (IL)'. From the set of positive and
negative examples, the inductive learning technique finds hypotheses, ie., definitions of
domain concepts. The authors use the technique to analyze and revise specifications if
any system property violations are discovered. Our work is different because we use
reinforcement learning. Our method does not use positive or negative examples to train
the system; the discovery of candidate links is executed autonomously.

Another example of inductive learning can be found in work by Spanoudakis, d’Avila-
Garces, and Zisman. They use a machine learning technique to generate requirements
traceability relations [41]. The traceability rules are established between two sets of
documents: textual requirement statements and object models. Based on user feedback on
the undetected traceability relations, the existing traceability rules are transformed to
match the indicated traceability relations. To implement the method, the authors utilize
abduction (AL)? and induction learning (IL) techniques and the part of speech tagging
method. In our work, we also establish logical links between two sets of documents, but
our method does not use the part of speech tagging and we used RL not AL or IL.

In addition to extracting knowledge from the documents, the machine learning techniques
can be used in recommender systems. Seo and Zhang describe a reinforcement learning
(RL) technique for the Web based personalized filtering system [45]. The work by Seo
and Zhang presents an interest for our work because the personalized filtering system
gives a boost to selecting relevant documents. The personalized information filtering
method learns from the profiles of individual users and theirr responses to presented
documents. Our method is similar to the work by Seo and Zhang using greedy term

" Induction Learning evaluates and generates conclusion based on some examples, ie. premises. In the
inductive logical argument, the premises support the conclusion to some degree of certainty [43].

% In abduction learning an explanatory hypothesis is adopted to account for all the facts or some of them
[44]
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selection through the RL technique to locate relevant documents. However, our method
differs because it does not use any form of feedback.

Cleland-Huang, Czauderna, Gibiec, and Emenecker present two machine learning
approaches to improve traces between regulatory codes and product requirements [46].
The terms in requirements are assigned probabilistic scores with respect to a regulatory
code. To classify the requirements, the manually created traces were used for cross-
training and testing. The second approach, web based, was used to retrieve indicator
terms fiom the Internet for a specific regulatory code. Only in this second case, the
machine learning classification took place based on the web-mined documents.

Asuncion H, Asunsion A, and Taylor [47] use the latent Dirichlet allocation (LDA)
machine learning technique to assign topics to traceability artifacts: requirements and
design documents. For this technique, the nitial input for the LDA method consists of the
documents and number of topics to assign. The authors suggest that topic modeling
provides semantic information about traceability artifacts.

Establishing links between the documents can also be based on related textual segments.
Hatziavasilloglu, Klavans, and Eskin present the composite similarity metric to measure
the semantic distance between a pair of small textual segments [48]. The authors use a
machine learning approach to select the potential optimal features between documents.
The potential matches are established through word co-occurrence. This approach
resonates well with our technique. We also use common linking terms and the terms
located close to a lining term in the text. The composite similarity performs the matching
through the noun phrases, synonyms, the semantic class of verb (verb implying similar
actions), and common proper nouns.

In our work, we also use synonyms to conduct matching. The composite similarity uses
the relative order of terms in evaluating the matching. The authors use and train a
classifier on manually marked pairs of units. This aspect of the matching used by the
authors echoes with our work. In chapter 5, we describe how the textual segments are
probed for similarities. The relative order of the terms is also considered for the similarity
evaluation.

The main focus of our work is to establish the logical links between the textual
documents by using common textual segments. The work presented by Menczer and
Belew lists many of features similar to our work [49]:

1. The authors describe how autonomous agents make decisions to automate the web
document search and discovery process. The agents in the work of Mencer and
Belew have a heuristic behavior by which the agents select links to follow. In our
work, the autonomous agents also discover a heuristic to traverse the search
space, ie., select a link to follow.

2. An agent in Menczer and Belew’s work senses the ‘“current neighborhood” by
analyzing the text where the agent is situated. This matching feature is similar to
the concept of term neighborhood that we use (Chapters 4 and 5).
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3. The agents in Menczer and Belew’s work use reinforcement learning (RL) to
modify the behavior to follow the “best link™ possible. In our work, we use the
RL technique to enable agent to traverse the search space and establish the
candidate links between the documents.

Even with so many similarities between the agents n Menczer and Belew’s work and
ours, there exist three notable differences:

1. The links between documents in the work of Menczer and Belew are web links. In
our work, the Ilinks between documents are established via common terms
(Chapter 4 and 5).

2. The agents of Menczer and Belew receive user feedback on the suggested links;
m our work the agents do not receive feedback.

3. The agents m Menczer and Belew’s work are created with “initial reservoir of
‘energy’ [49].” The agents in our research do not utilize any energy measurements
for the search space traversal.

To sum up the features of the related work, we can state the following:

- It has been proven useful to link documents by treating them as a collection
of phrases, not a bag of words [48].

- Small textual segments and the similarity between them can be evaluated
based on semantic distance [49].

- The textual segments of linking terms, ie. neighborhoods of the linking
terms, provide useful location data of the compared textual segments [48]
[49].

- The machine learning approach in general, and reinforcement learning in
particular, proved to be useful computational agents to modify and select
an optimal search space behavior [45] [49].

In Chapter 5, we describe further how we probe textual segments for similarities and order
terms considered for similarity evaluation.
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4 Research Approach

To trace high level textual elements (from a requirements document for example) to low
level textual elements (from a design document), we use swarm agents that traverse the
collection of all documents and the vocabulary shared by all documents. The main idea of
the proposed method is based on constructing a search space traversable by software ants.
The search space is composed of documents on both levels, high and low, and common
terms.

To use an analogy of the overall structure, documents with links to common terms can be
visualized as a “tree trunk” of common terms at the core of the search space. Documents
can be viewed as leaves on the tree’s branches (Figure 4.1).

N
o \\

CORPUS
(COMMON TERMS)

[ uea s ‘

e, tel ‘

Figure 4.1 Vocabulary with documents compose the search space.

The vocabulary, ie., the collection of terms from all documents, connects all documents
in the search space. The swarm agents can travel from high level documents to the
vocabulary using a positional index in the vocabulary.
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Personal 1 > Altxt <3>
Distribution 2
> Al.txt <4> A2.txt <6>
List 4
> Altxt <5> A2.txt <7> C2.txt <3,10> D3.txt <5,12>
Email 4| P A2txt <4> C2txt <2> C3.txt <3> Fltxt <13>
System 2 P C3.txt <2> D3.txt <4, 15>
I
Store 3 P Al.txt <6> D3.txt <4, 15> Fl.txt <12>

Figure 4.2 Positional index

The positional index stores such information as document name and positions (within
document) for each term in the vocabulary (Figure 4.2). Thus, using the positional
indexes, the swarm agents can reach every term in a document.

As shown in Figure 4.3, it is possible to reach terms ‘personal,” ‘distribution,” ‘list,” and
‘store’ from high level document Al.txt.

Al.txt A2.txt C2.txt C3.txt D3.txt F1.txt

A 4

Personal Distribution List Email System Store

Figure 4.3 Document to terms links inferred from the positional index.

To continue the journey further within the search space (Figure 4.5), the swarm agents
reach mto low level documents from the vocabulary level via the inverted index. The
mverted index is built during a preprocessing step performed during the construction of
the vocabulary.

First, the documents are parsed, and then undergo term stemming. Words are reduced to
their stem such as ‘comput-‘ for ‘computer’ and ‘computing.” Also, stop words such as

‘the’ and ‘of are removed. Term frequencies for each term in a document are also
calculated. The TF-IDF weight is calculated using formula 2.2.5 listed in sec 2.2.2.
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High Level Documents Terms Low Level Documents
Al .txt —  Personal 5 UCl.txt UC3.txt
UC2.txt UC6.txt
Al —  Distribution 2 UC3.4xt
A2.txt UC2.txt
C2.4xt Altxt <5> — Lis 4 UC3.txt UCo.txt
D3.txt A2txt <7> ' UC2.txt
C3.xt A2.txt — Email 4 UC3.txt
Fl.txt C2.txt UC2.txt
C3.txt | System 2 UC3.txt
D3.txt UC2.txt
Fl.txt Al.txt ] Stor 3 UCA.txt
D3.txt UC6.txt

Figure 4.4. Vocabulary with documents compose the search space.

The constructed inverted index indicates not only the textual element associated with a
given term, but also the type of the element: high or low. This is necessary for the search
processes. The type of element helps the swarm agents to navigate the search space
(Figure 4.4). In our model, we direct the swarm agents to go from high level to low level
documents.

Personal Distribution List Email System Store

\ 4
UCl.txt UC2.txt UC3.txt UC4.txt UCs.txt UC6.txt

Figure 4.5. Indirect index. Links from terms to documents containing the terms.

The navigation of the search space by the swarm agents is described by the simple swarm
algorithm.
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4.1 Simple Swarm
The simple swarm technique is described as follows:

SIMPLE SWARM TRACELINKS (H, L)
// Input High and Low level documents H and L
// Output list of agent count (h,l,n) - from h in I, where n is the count

1. For each document h in high level collection H

2 /T ={t,....t,} sorted terms in doc h

3 T « h.Terms.sortBy(TFIDF)

4. For each agent s in swarm S

5. i ¢« Random[1.10]

6. t «T[i]

7 // E is a record in the inverted index listing occurrences of
8. // term t in low level documents

9. E « Vocabulary[t].LinksToLowLevelDocuments
10. E.sortBy(t. TermFrequency)

11. j < Random[1.10]

12. e « Efj]

13. e.countAdd(h,l)

14. EndFor

15. EndFor

16. For each document h in high level collection H

17. For each document 1 in low level collection L

18. list agent count from h inl

19. EndFor

20. EndFor

Listing 4.1. Pseudo code for simple swarm.

When all agents reach the low-level elements, we can then establish candidate links. To
establish and quantify candidate links, we need to count the number of agents that made it
to the low-level elements, grouping them by their origin.

The origin is the name of the high-level element from where the agents started their
journey. If a low-level element B has at least one agent that came from element A, we
consider this count of at least one (1) as a potential candidate link between A and B. The
candidate links for each high-level element are ordered by the count of the agents at the
low-level elements. Agent counts are normalized to a value between 0 and 1, with the top
low-level link for each high-level element having a value of 1. Links are filtered out at
fixed threshold ntervals to calculate recall and precision values at each cutoff threshold.

Figure 4.6 depicts the application of the algorithm to a small example (select terms were
chosen for illustrative purposes). Assume that we have high-level requirements Reql.txt
and Req2.txt and use cases UCS5.txt and UCS8.txt:

Reql.txt: “The system shall support personal distribution lists.”
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Req2.txt: “The system shall be able to add a contact to the address list.”
UCS.txt: “User edits personal distribution list by adding new contact.”
UCS8.txt: “List email contacts.”

After pre-processing these elements, we determme that Reql.txt has the terms personal,
distribution, and list and that Req2.txt has the terms list, address, and contact. Similarly,
we know that the low-level element UC5 has the terms edit, personal, distribution, and
list and that UCS8 has the terms contact, list, and email. The mverted dictionary for the
collection of all documents is used as the common vocabulary. The terms in the common
vocabulary contain lnks pointing to the documents in which the terms are encountered.
The vocabulary term links contain the term frequency count TF and a tag indicating if it
is a high or low-level element.

As the algorithm starts, a group of agents is assigned to high level document. The number
of agents in the group is greater or equal to the number low-level documents. In the high-
level element, the terms are then ordered by the TF-IDF weight of each term i the
document. The agent randomly selects a term, for example, the term personal. The agent
then “positions” itself in the common vocabulary at the term personal. The agent inspects
the links from the term personal to low-level elements. These links are sorted in
descending order by term frequency. The agent randomly picks the next link to follow
from the top ten or less candidate links. On the last leg of its journey, the agent arrives at
the low-level element. At the end of this loop, the resulting composition of agents will
have all agents from all high-level documents located at the low-level elements.

High Level

High Level — Reg 1.txt HighLevel -Req 2.

personal distribution list List address contact
h o \\
\ ..
Vocabulary \\\
\
\

personal dlilj_'lbUlIOﬂ /_add /./ list address  contact

Low Level »
ow Leve j ) ) T

personal  distribution st W/ list  emails

q Low Lavel - LCA txt

edil Low Level —UCE.x contact

Figure 4.6 Agents tracing links from high-level to low-level elements via vocabulary

An important part of the swarm method algorithm that helps to refine the search results is
the threshold filter. For the swarm method, candidate link lLists are generated after
applying a threshold filter varying from 0.1 to 0.9. The threshold indicates a percentage
above which links are considered to be part of the candidate link list. For example,
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assume that one hundred agents starting from element Reql.txt traverse to documents
UCl.txt, UC2.txt, UC3,txt, and UC4.txt, of which 50, 35, 10, 5 agents reach UCI.txt,
UC2.txt, UC3.txt, and UC4.txt, respectively. If 0.7 is selected as the threshold, then only
UCl.txt and UC2.txt are selected for the candidate link list (normalized values are 1, 0.7,
0.2, and 0.1, respectively).

The simple swarm method we tested used the TF-IDF weight and term frequency as the
guiding heuristic for the agents. This version of the algorithm does not use any
pheromones. Therefore, formula 2.4.1 is not applicable in its classical sense. This
version of the algorithm appears to be a more focused version of TF-IDF. Nevertheless,
the simple swarm is a stepping stone for the next method, pheromone swarm.

4.2 Pheromone Swarm

The pheromone swarm method uses the TF-IDF weight amplifitd by pheromone count
on terms and links as the guiding heuristic for the agents. The distinction between the
simple swarm method and the swarm with pheromone method lies in the selection of the
terms and links by the swarm agents.

A simple swarm agent is driven to consider, select, and focus on the most important
terms in the document mostly at random (with some heuristic selection based on TF-IDF
value of a term m a document). The agents in the pheromone swarm take into
consideration pheromone deposits on the links and terms as they choose the next step of
their journey.

In a pheromone swarm, the agents of the swarm search, discover, and guide swarm
members to a target location via local interactions in the search space. The agent’s
decision on what term to select or what path to take is influenced by the presence of
pheromone markings on the inspected object, e.g., terms or links.

For example, when an agent starts from a high-level document, the agent has a higher
chance of selecting a term if the term has some pheromone markings. The pheromone
markings on a term i a high-level document indicate an established fact that this
particular term is a neighbor to some other term in a low-level document.

This idea of marking the neighbors and selected terms is based on ftreating textual
documents as collections of phrases rather than as bags of words. A similar idea was
expressed by Zou et al. [27], where the authors focused on ‘“two-word phrases.” Our
approach is different in this sense; we allow phrases to be loosely defned mn a
neighborhood of a linking term.

The swarm with pheromones algorithm is described in Listing 4.2:
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PHEROMONE SWARM TRACELINKS (H, L)
// Input High and Low level documents H and L
// Output list of agent count (h,l,n) - from h in I, where n is the count

1. For each agent s in swarm S

2 For each document h in high level collection H

3 /T ={t,....t,} sorted terms in doc h

4. T « h.Terms.sortBy (TFIDF,PheromoneCount)
5. i « Random[1.10]

6 t «T[i]

7 E « Vocabulary[t].LinksToLowLevelDocuments
8 E.sortBy (tTermFrequency, PheromoneCount);
9. j <« Random[1.10]

10. e «— E[j]

11. N <« LneighborsOf(t)

12. For each neighbor n of t

13. Vocabulary[n] .link[e].addPheromone[h]
14. if (Vocabulary[n] .links.Contain[h]) and

15. (h.Terms[n].isNeighborOf(t)) then

16. h.Terms[n].addPheromone()

17. EndFor

18. EndFor

19. EndFor

20. For each document h in high level collection H

21 For each document 1 in low level collection L

22. list agents from h inl

23. EndFor

24. EndFor

Listing 4.2 Pseudo code for pheromone swarm

Once all agents reach the low-level elements, they remain there. The pheromone deposit
can spread further up the graph to the terms. We use the same methodology to generate
candidate links using the cutoff threshold.

As the algorithm starts, a group of agents is assigned to a high level document, for
instance Reql.txt. In the high-level element, the terms are then ordered by the product of
TF-IDF weight and a linear function of pheromone count in the document. The agent
randomly selects a term from the top ten sorted terms. Returning to our original example,
the agent picks the term personal. The agent then “positions” itself m the common
vocabulary at the term personal Then, the agent inspects the links from the term
personal to low-level elements. In this algorithm the links may contain pheromone
deposits.
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The pheromone deposits on the link serve as attractors for the agents’ path selection. In
Listing 4.2, the lines 4,5 and 7,8 use the pheromone counts to select next term and low
level document respectively. For example, in line 4 the terms are sorted by pheromone
count in descending order. On the line 5, a random term from top 10 terms is selected. A
similar two step action takes places mn lines 7 and 8: links to low level documents are
sorted by pheromone count and a random link is selected from top 10 pheromone marked
links. The pheromone deposits on the links indicate that there is another agent at the low-
level document that came from a particular high-level document. Furthermore, the
residing agent in the low-level document is in the neighborhood of the term personal. If
the source document of the residing agent is Reql.txt, then our current agent will have a
higher probability of selecting this pheromone marked lnk. Once a link to the low-level
document has been selected, the agent crawls down to a low-level element. Once there,
the agent diffuises pheromones on the neighbors of the linking term. These pheromone
deposits will attract future agents traveling from the Reql.txt high-level document.

To experiment with the size of matching neighborhoods, we indicate how far the
pheromones are deposited from the linking term. Swarm agents can also be mstructed to
deposit pheromones in low-level documents beyond the immediate neighboring
documents and terms. To measure how far we allow agents to deposit the pheromones,
we introduce a delta value. When delta is equal to one, we deposit the pheromones on the
immediate neighbors. When we set the delta to 3, the agents deposit the pheromones up
to three neighbors to the left and right of the linking term in the low-level document.
When the delta is set to 5, five neighbors on either side of the linking term receive
pheromone deposits. If the linking term is at the end or beginning of a document, and
there are no “next 3 neighbors” on the right or left, only the present side of the linking
term’s neighborhood receives pheromone deposits.

The algorithm has to iterate through each swarm agent, each high level document, and
sort terms within the high level document by weight and pheromone deposit. If we have
A agents, D documents, and T terms, we say N = max(A,D,T). To iterate through every
agent, we are bound by N. To iterate through every document, we are bound by N. For
every time an agent crosses a document (N x N), the algorithm needs to sort at most N
terms in the document (N logN). The pheromone swarm algorithm has a complexity

O(N’logN).
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5. Validation

This section presents the validation of the research.

5.1  Evaluation Approach

The purpose of this work is to evaluate the performance of the swarm methods to
establish better quality candidate links between two sets of textual documents compared
to vector space model (VSM) with TF-IDF weighting, referred to as TF-IDF.

We ran TF-IDF and swarm methods on the target set of documents and compared the
quality of the candidate links generated by each method. The quality of the links for each
set of high level and low level elements was evaluated against the corresponding set of
correct links, ie., the answer set.

For all studies, swarm method results were compared against the TF-IDF method on the
Pine and CM1 datasets. Section 5.2 presents our hypotheses. In sections 0 and 5.4.2, we
present and evaluate the swarm methods on the Pine dataset using the primary measures
of recall, precision, F, and F2 as well as secondary measures for the Pine dataset. In
sections 5.4.3 through 5.4.5, we evaluate the swarm methods on the CM1 dataset, along
with a discussion about measures. Section 5.8 provides an overall summary of the results.
Data pomts for the figures presented in this section are presented in Error! Reference
source not found.of the Error! Reference source not found..

5.2 Hypotheses

To validate the performance of each method, we used a one-tailed hypothesis in
the form of the following question: Does “swarm method M” produce better
candidate link lists than TF-IDF?

The independent variable in the study is the method (TFIDF, simple swarm). The
dependent variable is MAP. The null hypothesis, H[method]y, is:

There is no statistically significant difference in MAP between VSM TF-IDF and
Swarm Methods.
H 0 :MAP ifidf = MAP swarm

The alternative hypothesis, H[method]a, can be stated as:

The MAP for Swarm Methods is greater that MAP for VSM TF-IDF.
Hy : MAPgurm >MAP;ﬁidf

5.3 Statistical Evaluation

The 11-point mterpolated precision-recall graph is used to evaluate the statistical
significance of the results (sign test). In addition, the Wilcoxon signed-rank test is applied
to the MAP results to test for significance at the 0.05 level In cases where the number of
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relevant links returned by the queries is different, the Mann-Whitney U Test is used
mstead of the Wilcoxon test.

5.4 Results to Date

The mformation that follows previously appeared in a conference [13] and a journal
paper [50]. As the baseline, we ran traces on the Pine and CM1 datasets using the TF-IDF
method. We treated the results obtained from TF-IDF for recall, precision, DiffAR, and
MAP as our reference point. For hypothesis evaluation, we ran ten experiments on the
Pine and CM1 datasets.

Due to the fact that agents’ heuristics on selecting the “next hop,” ie., term or document,
is based on a random choice, we gathered the results from several similar experiments.
We made an assumption that ten experiments should be sufficient to observe any trend (if
there is any) exhibited by the resulting random behavior of the swarm agents.
Furthermore, to wvalidate any statistically significant difference, a set of similar
experiments becomes a stronger base for any conclusion. 1 Simple Swarm Applied to
the Pine Dataset

Figure 5.1 presents the 11-point interpolated precision-recall curve for the simple swarm
and TF-IDF methods on the Pine dataset. Simple swarm presented higher precision than
TF-IDF at 6 out of the 11 recall points, with most of the points near the middle to high
end of recall The difference in precision, however, was not statistically significant using
the signed rank test.

Pine TF-IDF vs. Simple Swarm

1
0.9
0.8
0.7
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0.4
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0 01 02 03 04 05 06 07 08 09 1

Recall

TF-IDF  =#=Simple Swarm

Figure 5.1 11-point Interpolated precision-recall curve for TF-IDF and simple swarm for the Pine
dataset

Figure 5.2 depicts the F and F2 measures for both simple swarm and TF-IDF methods on
the Pine dataset across the different thresholds. This figure presents a different view of
how the two methods performed when threshold filtering was applied. F and F2 values
for TF-IDF start off high but degrade as threshold values increased. Simple swarm F and
F2 values, on the other hand, did not degrade as quickly as TF-IDF. They performed best
between the threshold values of 0.2 and 0.4. Figure 5.2 also shows that simple swarm had
a more consistent precision-recall tradeoff compared to TF-IDF when using threshold
filtering,
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For threshold values less than 0.4, simple swarm showed an increase in performance. The
TF-IDF produced a consistent decline in performance as threshold values increased. This
behavior can be explained by the fact that agents tend to gather around a smaller subset of
elements as threshold values increase. The simple swarm method “directs” each swarm
agent to consider and focus on the most important terms in the document, allowing agents
to perform a more focused search. After passing an optimum threshold, agents start
missing correct targets, e.g., low-level elements that are part of the correct links to the
high-level element from which the agents started the journey.

Pine TF-IDF vs. Simple Swarm

F/ F2 measure

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold

F TF-IDF +9= F2TF-IDF

==& F Simple Swarm F2 Simple Swarm

Figure 5.2 F and F2 measures for TF-IDF and simple swarm on the Pine
dataset

Another explanation for the difference in F and F2 behavior between TF-IDF and simple
swarm i how each link’s weight is calculated. TF-IDF Iink weights are measures of
cosine similarity between the weighted keyword vectors of two documents [17]. For TF-
IDF, link weights above 0.8 are uncommon.

Swarm methods, on the other hand, calculate lnk weights by dividing each link’s agent
count by the largest agent count. Using this method, the top-most link always has a
weight of 1. The difference in how weights are calculated does not prevent the methods
from being compared appropriately as links are filtered using the same threshold values
for both methods. The difference m F and F2 behavior indicates that TF-IDF achieves
peak scores at lower threshold values compared to swarm. Both methods achieved
comparable peak F and F2 values at different threshold values, e.g. TF-IDF at 0.1 and
simple swarm at 0.2 and 0.4.

Pheromone swarm precision deteriorated below the 0.2 threshold but still remained near
the 0.9 range. Figure 5.3 presents the 11-point mterpolated precision-recall curve for the

pheromone swarm and TF-IDF methods on the Pine dataset. Pheromone swarm gained a
slightly higher precision than TF-IDF at several points for various delta values.
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Pine TF-IDF vs. Pheromone Swarm
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Figure 5.3 11-point interpolated precision-recall curve for pheromone
swarm and TF-IDF for the Pine dataset

Figure 5.4 depicts the graph of the F measure for TF-IDF and pheromone swarm. Peak F
values for pheromone swarm delta=1 and delta=3 are comparable to the TF-IDF Peak F
value, e.g., 0.58, 0.56, 0.58, respectively. Pheromone swarm did not exhibit the same
F/F2 trend as simple swarm when threshold values increased. The decrease in F values
for the pheromone swarm was still slower than TF-IDF, indicating that the
recall/precision tradeoff does not decrease as quickly with each increasing threshold
value.

Pine TF-IDF vs. Pheromone Swarm
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Figure 5.4 F measure for TF-IDF and pheromone swarm for the Pine
dataset

Figure 5.5 depicts the graph of the F2 measure for TF-IDF and pheromone swarm for the
Pine dataset. The trend in the F2 graph is similar to Figure 5.4, with TF-IDF
outperforming pheromone swarm 0.66 to 0.61respectively at the 0.1 threshold. Even so,
the recall/precision tradeoff was still slower compared to TF-IDF, implying that the
pheromone swarm identified a greater number of relevant candidate links.
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Pine TF-IDF vs. Pheromone Swarm
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Figure 5.5 F2 measure for TF-IDF and pheromone swarm for the Pine
dataset

5.4.2 Secondary measures for the Pine dataset

Figure 5.6 shows DiffAR performance for simple swarm, pheromone swarm, and TF-
IDF methods. All swarm methods produced consistently higher DiffAR values compared
to TF-IDF. Simple swarm performed the best among all methods, with DiffAR going
from 0.41 to 0.93 as threshold values increased. This suggests that link weights from
Swarm methods correlate to a greater degree with link correctness. Achieving higher
DiffAR represents work that is less frustrating for human analysts, who must ultimately
vet all candidate links to form the final traceability matrix.

Pine DiffAR/Recall
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Figure 5.6 DiffAR vs. recall for simple swarm, pheromone swarm, and TF-
IDF for the Pine

Figure 5.7 plots MAP vs. recall for the simple swarm, pheromone swarm, and TF-IDF
methods. The simple swarm method returned more correct links at higher MAP with the
first three thresholds compared to all the other swarm methods. Compared to TF-IDF at
the 0.1 threshold, simple swarm achieved 0.76 MAP at 0.86 recall while TF-IDF
achieved 0.75 MAP at 0.72 recall
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Figure 5.7 MAP vs. recall for simple swarm, pheromone swarm, and TF-

IDF for the Pine dataset

5.4.3 Simple Swarm on CM1 dataset

Next, we examined the results for the CM1 dataset. Figure 5.8 shows the recall/precision
graph for the simple swarm and TF-IDF methods. Note that precision values for this
dataset are significantly lower than Pine due to the larger size of the dataset. This is a
common phenomenon for IR methods that larger datasets yield smaller precision values.

1
0.9
0.8
0.7
0.6
0.5
0.4
03

Precision

0

CM1 TF-IDF vs. Simple Swarm

0.2 4
o2 ‘_\N—*_‘\‘

0 0.1

» ®

03 04 05 0.6 07 08 0.9 1

Recall

TFIDF  ==®=Simple Swarm

Figure 5.8 11-point interpolated precision-recall curve for the simple swarm

and TF-IDF methods on the CM1 dataset

The recallprecision tradeoff between the two methods is slightly different than the
tradeoff seen in the Pine dataset. Precision increased slowly when recall decreased, e.g.,
for simple swarm, precision only increased from 0.04 to 0.07° while recall dropped from
0.8 to 0.5. This indicates that simple swarm agents were not picking the correct low-level
elements as threshold values increased. It is apparent that the search options given to the
swarm agents restricted their options to explore and directed them to an overly lLimited

number of low-level elements.

> We acknowledge that this is not acceptable precision.
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Figure 5.9 shows the F and F2 measures for the simple swarm and TF-IDF methods. The
F and F2 measurement for simple swarm on CM1 did not exceed 0.25. Note that the F
measure for simple swarm did not change significantly, varying from 0.15 to 0.24.

TF-IDF achieved a peak F value of 0.28 and peak F2 value of 0.37, significantly
outperforming simple swarm. For CM1, the TF-IDF method performed better than simple
swarm for both F and F2 measurements. TF-IDF performed best at the 0.2 threshold
value while simple swarm performed best at the 0.8 threshold for F and the 0.5 threshold
for F2. Precision for simple swarm ranged from 0.04 to 0.19, contributing to the low F/F2
values and indicating that the two document levels contained many “coincidental
matches,” that is to say, even if the elements contained many similar terms, they were not
necessarily classified as true links in the answer set.

CM1 TF-IDF vs. Simple Swarm

0.4

03 |

F/F2 Measure

Threshold

TF-IDF === Simple Swarm =«=° =¥« F2TF-IDF F2Simple Swarm

Figure 5.9 F and F2 for the simple swarm and TF-IDF methods on the
CM1 dataset

5.4.4 Pheromone Swarm on the CM1 dataset

Figure 5.10 shows the precision-recall curve for the pheromone swarm and TF-IDF
methods where agents deposited pheromones up to 1, 3, and 5 neighbors away, e.g.,
delta=1, delta = 3, and delta = 5. The pheromone swarm method performed worse at
almost all recall pomnts except for 0.5 recall, where pheromone swarm delta=1 and
delta=3 tied with TF-IDF. Note that delta does not have much of an effect on precision
for most of the recall points. That implies that the size of a neighborhood does influence
the precision on CM1.
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Figure 5.10 11-point interpolated precision-recall curve for pheromone
swarm, delta =1, 3,5, and the TF-IDF methods for the CM1
dataset

Figure 5.11 shows the F and F2 measures for the pheromone swarm and TF-IDF
methods. The F measurement stayed under 0.19. At the same time, F2 reached 0.26 at
the threshold value of 0.3. Note that the F measure remained in the narrow “corridor”
between 0.12 and 0.19 for the most part. The “corridor” of F2 values was between 0.17
and 0.26 in the CM1 dataset. TF-IDF outperformed pheromone swarm, with similar
results compared to simple swarm, although the peak F2 value for pheromone swarm was
at the 0.2 threshold.

CM1 TF-IDF vs. Pheromone Swarm
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Figure 5.11 F and F2 measures for pheromone swarm, delta=1, and TF-IDF
methods for the CM1 dataset

Figure 5.12 and Figure 5.13 show the F and F2 measures for the TF-IDF and pheromone
swarm methods for CM1. F measure for pheromone swarm increased slowly with each
threshold increase, while F2 measure slowly decreased instead. Pheromone swarm with
delta = 3 seemed to perform better than the other two delta values, achieving peak F
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value of 0.20 and peak F2 value of 0.25. Therefore, expanding the pheromone affected
neighborhood did not seem to improve the performance of the method.

F measure
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Figure 5.12 F measure for the pheromone swarm, delta =1,3,5, and the TF-IDF methods for the

CM1 dataset
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Figure 5.13 F2 measure for the pheromone swarm, delta =1, 3,5, and the TF-IDF methods for the

CM1 dataset

5.4.5 Secondary measures for the CM1 dataset
Figure 5.14 shows DiffAR performance for simple swarm, pheromone swarm, and TF-
IDF methods. Similar to Pine, all swarm methods had higher DiffAR values compared to
TF-IDF. All Swarm methods performed about the same, with simple swarm performing
worse between threshold

values of 0.1 to 0.3.
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Figure 5.14 DiffAR vs. recall for simple swarm, pheromone swarm, and TF-
IDF methods on the CM1 dataset

Figure 5.15 plots MAP vs. recall for the simple swarm, pheromone swarm, and TF-IDF
methods. Simple swarm performed better than TF-IDF at the 0.1 to 0.3 threshold.
Pheromone swarm with delta = 3 also performed better than TF-IDF at the 0.1 threshold.
Pheromone swarm with delta = 1 performed worse than TF-IDF, but as delta increased,
performance was comparable to TF-IDF. Note, however, that MAP was still quite low at
0.23, indicating that, on average, each document (high-level element) has an average
precision of 23%.
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Figure 5.15 MAP vs. recall for the simple swarm, pheromone swarm, and
TF-IDF methods on CMl1

5.5 Statistical Analysis

Table 5.1 shows the values for MAP and DiffAR for TF-IDF, simple swarm, and
pheromone swarm methods. The lower value of MAP implies better results; the higher
value of DiffAR indicates a higher quality of the candidate links. As we can see, the
MAP values for Pine were better in the experiments run with Pheromone swarm with
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delta size 1, 3 and 5. For example, the Pheromone method with delta =1 produced MAP
of 0.68 for Pine Dataset. The Wilcoxon-Signed Rank test indicated signed rank statistic
W. =397 and W. =164 with sample size of 33, and statistical significance of p <= 0.03.

In Wilcoxon-Signed Rank test, the high value for the “positive” sum (ie., 397 vs 164 in
the case of delta =1 at threshold 0.1) implies that we can reject the null hypothesis. We
see mixed results for MAP and DiffAR produced by both methods (simple swarm and
pheromone swarm).

Table 5.1 Statistical Analysis for the TF-IDF, simple swarm and pheromone
swarm methods

MAP DiffAR

tfidf@0.2 | 0.204 | Wilcoxon Signed-Rank (tfidf vs swarm) 0.101 |Mann-Whitney (tfidf vs swarm)

ss@0.3 0.227|W+=4806, W-= 6519, N= 150, p <= 0.1083 0.281 |U=9839,z=-4.65,p<0.0001
CMI|deltal@0.3] 0.163 | W+=4191, W-=2479,N=115, p<=0.01696 0212 |U=5979,z=-1.99, p<0.0466

delta3@0.1] 0.222]W+=6117, W-= 6924, N = 161, p <= 0.4964 0.261 |U=7989,z=-3.2,p<0.0014

delta5@0.1| 0.209 | W+=4297.50, W-=4747.50, N = 134, p <= 0.6181 0272 |U=7722,2=-2.92,p<0.0035

tfidf@0.1 0.75 |Wilcoxon Signed-Rank (tfidf vs swarm) 0.179 |Wilcoxon Signed-Rank (tfidf vs swarm)

ss@0.1 0.76 |W+=272.50, W-=322.50, N = 34, p <= 0.6753 0456 |W+=40, W-=1088, N=47,p<=3.037e-08
Pine |deltal@0.1| 0.68 |[W+=397, W-=164,N=33,p<=0.0382 0.377 |W+=232, W-=896,N=47,p<=0.0004516

delta3@0.1] 0.66 |[W+=425, W-=170,N=34, p<=0.0299 0436 |W+=162,W-=966,N=47, p<=2.151e-05

delta5@0.1] 0.58 |[W+=591, W-=112,N=37,p<=0.0003 0445 |W+=151,W-=977,N=47,p<=1.271e-05

5.6 Threats to Validity

The lines in bold in Table 5.1 imply we can reject the null hypotheses in favor of the
alternative. Yet, not every experiment indicated that the swarm methods outperformed
the benchmark method (VSM TF-IDF).

5.7 Threats to Validity

Threats to conclusion validity threaten the ability to draw correct conclusions from the
study results. By using two datasets and applying similar treatments, we addressed the
reliability of the treatment implementation. We wused standard mformation retrieval
measures to evaluate effectiveness, such as MAP. Both datasets were analyzed using the
TF-IDF, simple swarm, and pheromone swarm methods.

There was a possible threat to internal validity due to experimenter bias. The answer
sets were created by human analysts that are familiar with the traceability research
domain. We reduced this threat by using datasets for which answer sets had been
independently verified by more than one analyst, and in some cases more than one
research group (CM1). We also used a vetted tool, RETRO.NET [9], and adapted it in
order to implement the swarm techniques.

There was another possible threat to internal validity due to stochastic agent behavior.
The swarm methods randomly select links to follow. To mitigate this threat, we ran each

method ten times and exammed the mean recall and precision values. In future
experiments, we plan to execute the same methods at least ten times.
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Threats to construct validity undermine how the experiment settings and measurements
truly determine the correct desired properties. In our experiments we decided to use the
agent count in low level documents as a measurement for candidate links. We reduced
threats to construct validity by using a relative agent count (out of total swarm size)
rather than absolute count to indicate a candidate link.

Threats to external validity deal with whether the results can be generalized. Results to
date used two datasets from two different domains for validation. Though both datasets
are real projects (not student projects), one of them is relatively small (49 x 51).
Therefore, it is not possible to state that the study sufficiently validated all domains or all
projects [9].

5.8 Overall Summary

Though the swarm agent counts and TF-IDF links weights are not calculated in the same
manner, they serve a similar role; they are used for filtering the candidate links. The
higher the filter value (a close cosine similarity in documents in TF-IDF or a higher agent
count in swarm methods), the more the F values decreased for TF-IDF and Swarm
methods on both datasets.

Figure 5.1 shows that F values for TF-IDF perform better than simple swarm below
threshold values of 0.2 on the Pine dataset. After the threshold is increased, the swarm’s
F values (with/without pheromones) were better than TF-IDF as seen in Figure 5.2 and
Figure 5.4. Furthermore, TF-IDF exhibited a steep decline m F and F2 as threshold
values increased. Swarms demonstrated better values for F measurements for higher
threshold values. The higher threshold mmplies that an analyst has to review fewer links of

higher quality.

Figure 5.9 showed better performance for the TF-IDF method than simple swarm on the
CMI dataset, achieving 0.28 for F and 0.37 for F2. Simple swarm performed better than
TF-IDF past the 0.4 threshold.

Pheromone swarm, in general, performed better than simple swarm on the CM1 dataset.
Pheromone swarm with delta=3 reached the highest value for F of 0.21 at the 0.6
threshold. Furthermore, pheromone swarm exhibited a gradual increase in F value as the
threshold increased. TF-IDF reached its peak F value of 0.28 at the 0.3 threshold and then
declined sharply as threshold values increased.

The same trend was observed with TF-IDF in the CM1 and Pine datasets for the F
measurement. The F2 values for the swarm methods exhibited a slightly different
behavior. F2 values slowly declined as the threshold increased for all swarm methods.
Even in these mstances, the swarms displayed a more gradual change in performance as
the threshold increased. Pheromone swarm F2 values gradually decreased from 0.25 to
0.18.
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In summary, the simple swarm approach showed some advantage over the TF-IDF
method on the Pine dataset, yet it did not fare as well on CM1. At the same time, with
pheromone swarm, any advantage indicated on the Pine dataset was lost. Pheromone
swarm performance on CM1 improved over simple swarm, but still underperformed TF-
IDF.

A possible explanation for this is the way that the high and low elements are connected.
The Pine dataset contains 49 high-level and 51 low-level elements, with 2,499 possible
links. The CM1 dataset contains 235 high and 220 low elements, creating a search space
of 51,700 possible candidate links. The answer set for the Pine dataset has 246 links,
about 10% of all possible links. In the CM1 dataset, the ratio of true links over possible
links goes down to less than 1% (361 true links divided by 51,700). CM1 also uses a
significant amount of technical terms and acronyms, causing the swarm agents to end up
at incorrect low-level elements. One can draw a logical conclusion to utilize a thesaurus
when a dataset contains many acronyms.

It appears that in a compact dataset such as Pine, the pheromones made the agents “over
choose” certain links. This led to lower starting recall and higher precision as seen in
Figure 5.3. On the other hand, for CMI1, pheromone swarm delivered better precision
than simple swarm with more focused selection in a sparsely linked set. Agents got to
pick proper links based on the pheromone markings previously deposited by other agents.

For the CMI1 dataset, the MAP measurements exhibited some variance with regard to the
pheromone swarm method. Pheromone swarm at delta = 3 performed just “above” TF-
IDF and all other swarm methods. As we saw earlier for the CM1 dataset, increasing the
size of the affected neighborhood delivered some performance gains. Simple swarm had
better MAP at lower thresholds for both datasets.

Another interesting result we observed was related to the size of the neighborhood of a
lmking term. When we increased the delta from 3 to 5 for the pheromone swarm, we
noticed a slight drop in performance across just recall measurements and both datasets.
Apparently, by depositing pheromones on neighbors that are “too remote,” the agent
mtroduces too much noise for future agents. For example, on the CM1 dataset with delta
= 3 the starting recall and precision values were 56% and 8%, respectively. When we
increase the delta to 5, ie., five neighboring terms on either side of the linking term
received deposits, the starting recall and precision became 48% and 8%, respectively.

Maarek et al. [35] and N and Easterbrook [36] experimented with a neighborhood of
size five (5) using ‘lexical affinities.” Our work differs from ‘lexical affinities’ in several
ways. Unlike ‘lexical affinities,” the swarms consider neighbors that may cross sentence
boundaries. ‘Lexical affinities” pick up two word units, whereas the swarm considers all
terms within the limits of the mspected neighborhood. This difference may explain why
we obtained an optimal neighborhood of three (3) as opposed to five (as in ‘lexical
affinities’).
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To achieve high recall and precision results for the CM1 dataset, the swarm agents have
to conduct the search with a more narrow focus. The use of a thesaurus might have
directed the swarm agents to the proper document. In addition, a method of handling
acronyms might be of significant assistance. In this case, the thesaurus may become
project specific.

In the case of TF-IDF at low threshold values, the method considered a greater number of
the low-level elements as possible candidate links, thus yielding higher recall at the cost
of precision. The Swarm method, a more focused approach than TF-IDF, limited the
“discovery horizon” for the agents by focusing on the top terms in a textual element,
hence limiting the possible search alternatives. Both methods increased recall at the
expense of precision.
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6 Reinforcement Learning Model
This section presents the Reinforcement Learnmg method overview and observations
made based on empirical results.

6.1 Overview

The search space in a reinforcement learning (RL) model is similar to the search space
described in the swarm technique. It has three layers of data. The top level consists of the
high level documents. The middle level consists of all terms i all documents. The
bottom level consists of the low-level documents.

The agents traverse the search space starting from the top level documents down to the
low level documents by selecting the terms n the middle layer that are common between
the selected documents. The main idea of the algorithm is to equip the agents with some
heuristics to navigate the search space and choose the correct candidate links between the
high and low level documents.

To define a search space in terms of the RL model, we need to define states, actions,
transitions, and rewards. Figure 6.1 lists states and the transitions between them.

States are defined by the agent’s position in the data space. The agents can be in any of
the following states:

- Top level document, FEL£

- A term in a high level document, &se

-  Low level document, L£

- A term m alow level document, tee

- A synonym term in vocabulary, s¢.

The agent’s states are the positions in the search space where the agent can be located.
The action the agent selects determines the states in the search space to which the agent

will transition. Possible actions at states and transitions between the states are shown i
the Agent State Transition Diagram, Figure 6.1.
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Figure 6.1. RL Agent state transition diagram.

As we can see in Figure 6.1, when an agent is positioned at a high level document, state
FEL, the agent starts by selecting a term as the starting point for its journey (the heuristic
of selecting terms is described below). By selecting a term in a high level document, the
agent transitions to the state twe. From the state &wxe, the agent can choose a low level
document that contains either the term or a synonym of the term.

By choosing a low level document, the agent transitions to the state LL. From the state
LL, the agent should select a term in the low level document. If the low level document
contains the term éwxe in several positions, the agent needs to select a position tee within
the low level document to maximize the match between the neighborhoods i the high
and low level documents. A neighborhood is a textual segment located around a linking
term.

Alternatively, from state &xe, the agent can also choose to explore the synonyms of the
term. If the agent selects a synonym, it transitions to the state s.. From the state s the

agent can only choose a low level document containing the synonymus term. Possible
actions at states and transitions between the states are summed up in Table 6.1.
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Table 6.1. Agent actions.

From Action* To

Top Level Document HL | Select a term Term (High LevelDoc)  tHL

Term(High Level Doc) tyr | Select Low Level or Low Level LL
Synonym Document

Term(nigh Level Doc) tyr | Select Low Level or Synonym St
Synonym

Low Level LL | Select a term Term(Low Level Doc) tLL

Document

A synonym term in St Select Low Level Low Level tLL

vocabulary document

Each action listed n Table 6.1 can be in one of the three behaviors: random, linear, or
quadratic.

In random behavior the agent has an equal probability of transitioning in any of the
available next states. The formula for the random behavior is as follows:

Pr($) =~ . (6.1)

where S; is a reachable state and N is the number all reachable states. For example, if the
agent is in a “term- high-level” state ¢xe and has ten possible low level documents, ie.
ten reachable L£L states, the probability of transitioning into each of the reachable states
is only 0.1.

Linear behavior allocates the transitional probabilities to the reachable states proportional
to the numeric values or rewards the reachable states possess. The formula for linear
behavior is as follows:

Value (S;) (62)

2

Pr(State;) =

z:j €possible states (Sj )

The probability of transitioning nto the state S; is proportional to the value in the state S;,
divided by the sum of values of possible transition states. For example, if the ten
reachable L£ states from the state txe had the following values associated with them:
{20, 50, 30, 0, 0, 0, 0, 0, 0, 0}, the probability of transitioning into the first LL state is
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0.2, mto the second 0.5, the third is 0.3. The remaining reachable states would receive 0
transition probability. We describe the numeric state values and rewards later.

When the agent selects the quadratic behavior, the transition probabilities from the
example above would be distributed based on the following formula:

Value (S;*S;) 6.3)
z:j €possible states (Sj *Sj)

Pr(State;) =

The probability of transitioning into the state S; is proportional to the squared value in the
state S;, divided by the sum of squared values of possible transition states.

Table 6.2 shows state values and associated behavioral probabilities for an agent
inspecting the A3.txt high level document in the Pine dataset. The probabilities depend
upon the term selection behavior the agent may choose.

Table 6.2. Term selection probability based on the transition values and
selection behavior.

Term Value Random | Linear | Quadratic
a3 0 0.067 0.00 0.00
address | 1.106 | 0.067 0.12 0.10
book 0.808 | 0.067 0.09 0.06
allow 0 0.067 0.00 0.00
creat 0.52 0.067 0.06 0.02
delet 0.29 0.067 0.03 0.01

modifi 0 0.067 0.00 0.00
add 0 0.067 0.00 0.00
name 0 0.067 0.00 0.00

delet 0.24 0.067 0.03 0.00
name 0.026 | 0.067 0.00 0.00

person | 1.5 0.067 0.16 0.19
distribut | 1.54 0.067 0.17 0.20
list 1.55 0.067 0.17 0.20
pdl 1.57 0.067 0.17 0.21

Consider the term ‘list.” In the course of the Reinforcement Learning algorithm, the state
“A3-list” received the wvalue 1.55. The random selection behavior estimates the
probability of transitioning into “A3-list” state from “A3” state as 0.067. The linear
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selection behavior raises the probability of such transition to 0.17. The quadratic selection
assigns the transition from ‘A3’ to ‘A3-list’ the highest probability, 0.21.

Figure 6.1 and Figure 6.2 display the transitional probabilities for linear and quadratic
selection behaviors based on Table 6.2

0.2
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0.1
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Figure 6.2. Term selection probability based on linear selection behavior.
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Figure 6.3. Term selection probability based on quadratic selection

behavior.
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It can be visually seen that the term ‘delet’ in Figure 6.3 is significantly smaller compared
to the terms ‘distribut,” ‘list,” and ‘pld.” It is also worth mentioning that our RL algorithm
differentiates between the different positions of a term in a document. For example, the
term ‘delet’ appears in document A3 in two positions. Each position, or state “A3-pos,’
receives different values based on values calculated during the Value Iteration algorithm.
Therefore, the positions receive different transition probabilities.

A state “a term in low level document” ¢#e can have a reward. This is a numeric value
associated with transitioning into the ¢xe state. The reward is calculated by comparing the
text segments in two neighborhoods: n high and low level documents. The comparison
evaluates how many common terms the two segments share. The reward is estimated
using the following formula:

. . 6.4
B cn Sovser, SO0 W tfidfy * Cuign + tfidfy, *C] &Y

where H is the collection of high level documents, L is the collection of low level
documents, and w,,w, are the terms in H and L documents respectively.

The function §(w,, w) is calculated as follows:

lifw, =w, (6.5)

8wy, w,) = {O ifw #= w,’

The multiplication coefficients range from 1 to 10: Cp;gp, Cipy, € {1,10} . The range of
multiplication coefficients is a calculated estimate on the similarity of the textual
neighborhoods. The higher values for the Cy;4p, and Cy,, coefficients imply that the
matching terms are close to each other in the neighborhood of the linking term.

The reward associated with transitioning into a position n a low level document is
propagated back to the high level documents through the common linking terms. As
described in the background section (Section 2.3), the agents choose the behavior in the
RL model, ie., the search space navigation policy, to maximize expected return. The
expected return is calculated by the formula:

(6.6)

_ VN-1
R=2t>0 T

where 1; 18 the reward received after #-th transition action.
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The Reinforcement Learning algorithm for requirements traceability is described in
Listing 6.1:

REINFORCEMENT LEARNING TRACELINKS (H, L)
// Input High and Low level documents H and L
// Output list of agent count (h,l,n) - from h in I, where n is the count

1. // Creates State Space

2. For each document hl in high level collection H

3. States.Add(NewState(hl))

4. For each term tin high level document h

5. i « position of t in hl

6. States.Add(mewState(hl_t))

7. // Iterate through low level documents linked via term t
8. For each document ld in Vocabulary.GetDocsByTerm (t)
9. If ld is lowLevelDocument

10. For each position j of term t in ld

11. lowLevelDocState «— newState(ht t ld posj)
12. Value = EstimateMatchingValue(hl,ld,i,j)

13. lowLevelDocState.Value «Value

14. End For

15. Else //ld is a synonym

16. ld 2 « Vocabulary.GetDocsByTerm (ld)

17. For each position j of term Id in ld_2

18. lowLevelDocState «— newState(ht t_ld_posj)
19. Value = EstimateMatchingValue(hl ld 2,i,j)
20. lowLevelDocState.Value «<Value

21 End For

22. End if

23. End For

24. End For

25.

26.

27. // Calculate state values

28. Forcycle 1to5

29. For each state s in States

30. argMaxValue <0

31. possibleSates < s.Transitions

32. For each action a in Actions

33. possibleStates. TransitionProbabilitiesForAction(a)

34. For each ps in possibleStates

35. possibleValue <« possibleValue + ps.Probability™* ps.Value
36. If possibleValue > argMaxValue

37. bestAction «—a

38. s.Policy «a
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39. Endif

40. End For //possible states

41. argMaxValue <« Max (possibleValue, argMaxValue)
42. End For // Actions

43. s.Value<—s.TransReward + argMaxValue

44. End For // states

45

46. // Traverse the Search Space
47. For each top level document hl

48. For each agent ant in colony

49. currentState <« States(hl)

50. While CurrentState = low level document

51. /fusing currentState.Policy and currentStates. Transitions
52. nextState < currentState.SelectNextState

53. currentState <nextState

4. End While

55. End For

56. End For

Listing 6.1 Pseudo code for requirements traceablity reinforcement learning

The Reinforcement Learning algorithm determines an optimal transition policy for each
state by maximizing the expected return. The transition policy will become the guiding
heuristic for the agents to traverse the search space.

6.1.1 Path Saturation

The agents choose to select certain states based on the space traversal policy. When an
agent is presented a choice of possible next states $= {s;, s2,... , Sk}, the probability of
transitioning into the next state depends on the value the next state holds. It is possible for
one of the next states to have a value which is much higher than the values of other
possible next states. In this case, the probability of transitioning into S, is higher than the
probability of transitioning into any other state:

Pr(s;) >> Pr(s;), where s; s, € {s;, 52,... .8k} and i#j, ©7

It is possible to have a situation where a majority of agents always select the state with
the transition probability much higher than other possible states. This scenario may limit
the search only to the states with high values. To address this situation, we introduce the
notion of path saturation.

Path saturation is a value added to define the number of agents transitioning from state S
to state Sp. As the saturation value gets higher, the probability of transitioning from S to
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Sp becomes smaller. The saturation value from S5 to Sg on the transition path has the
mverse effect on the transition probability from S to Sg.

In a manner similar to the Swarm Algorithm, the candidate links are estimated by the
agent count gathered in the low level documents. A candidate link between high level
document HLg4,. and the low level document LLg,. gets a count of one if an agent starting
from HL4.. has reached the low level document LL4,.. After all counts on the candidate
links have been calculated, the candidate links are ranked by the agent count.

Having defined the search space and the search space traversal heuristic, the next step is
to outline the experiment design.

6.1.2 Experiment Design

In order to validate the RL technique, it was applied to two datasets. The datasets are the
same as used for the swarm algorithm. The first project consisted of 49 textual
requirements and 51 textual use cases. The dataset is a text-based email system Pine
developed by the University of Washington [51].

The Pine dataset contains 246 true links. These links form the answer set, ie. a collection
of links against which we can validate our findings.

The second project consisted of 22 requirements documents and 53 design documents in
the NASA scientific mstrument project CM1SUB [52]. The project has 45 true links in
the answer set.

The experiments were conducted using a Vector Space Model using TF-IDF weighting
(TF-IDF hereafter) and the Reinforcement Learning (RL) method. The independent
variable in the study was the method (TFIDF, Reinforcement Learning). The dependent
variables were recall and precision. The precision-recall graph and statistical analysis were
used to evaluate the results.

All textual documents were pre-processed, the agents selected each high-level element
one at a time and the agents used the search space navigation heuristics established by the
RL method. The output was captured in the form of candidate RTM. The results were
compared to the answer set to calculate recall and precision (formulas 2.1.1 and 2.1.2)
defined earlier.

To elimnate any possible threats to the validity of the experiment, several controls were
mmplemented.

Internal threats to validity mcluded possibly indicating a relationship between the
treatment methods and the outcome, when i reality there was no relationship. First, in
our controlled experiment, we used the same datasets in the same environment. This was
done to provide a fixed environment where it was possible to observe the differences in
the outcome only where the treatments are different, ie., where we apply different
candidate lnk generating algorithms.
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To address the possible threat to internal validity due to repeated testing, each method
was run ten times and examined using the mean recall and precision values. Each method
produced average recall and precision values with variances ranging from 0.003 to 0.06.

To protect the ability to draw valid conclusions from the study, the same two datasets
were analyzed using similar treatments. In this experiment, both datasets were analyzed
using the TF-IDF and the RL methods.

Another possible threat identified was the effect of experimenter bias on the ability to
reach valid conclusions based on the data. This threat was reduced by using datasets
where the answer sets were independently verified by more than one analyst. In the case
of CM1SUB dataset, more than one research group was used.

There was additional potential for bias in that the answer sets created by human analysts
familiar with the traceability research domain. The vetted tool, RETRO.NET [36], was
used and adapted in order to properly implement the RL technique. The threats to validity
were also reduced by using the standard information retrieval measures of recall and
precision to evaluate effectiveness.

In addition to the internal threats to validity, threats to external validity and the ability to
properly generalize the results were addressed by using two datasets for validation.
Though both datasets are real projects (not student projects), they are small size datasets.

Also, though the datasets do represent two different domains, it is not possible to state
that the study sufficiently validated all domains or all projects.

6.2 Results

Following the completion of the experiments, the RL method and TF-IDF method were
evaluated for the Pine and CMISUB datasets using the primary measures of recall and
precision. Section 6.2.1 presents the results and observations made during the mitial
stage of the RL algorithm development. The RL results for Pine are shown in in Section
6.2.2. In section 6.2.3, we evaluate the RL method for the CM1SUB dataset. Section
6.2.4 provides an overall summary of the results and directions for future possible work.
Data points for the figures in this section are presented in Table 2 of Appendix A.

6.2.1 Reinforcement Learning Initial Results and Points of Interest

The initial development phase for the RL algorithm yielded results that were less than
impressive. For both datasets, Pine and CM1SUB, the precision-recall curves for the RL
method were below the precision-recall curves for the TF-IDF method. Figure 6.4
presents precision-recall curve for Pine obtained using an early version of the RL method.
It is clearly visible that the RL method at that phase underperformed the TF-IDF method.
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Figure 6.4 Precision-recall curves for TF-IDF and initial phase of
reinforcement learning methods for the Pine dataset

Compared to the TF-IDF method, the mitial version of the RL algorithm showed lower
precision values for the same values of recall. The highest value of precision for the RL
method was 0.67 at recall 0.13. At the same time, for TF-IDF at recall 0.13 the precision
was 0.95. We observe a similar situation for the CM1SUB dataset on the mitial version of
the RL algorithm, shown in Figure 6.5.
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Figure 6.5 Precision-recall curves for TF-IDF and initial phase of
reinforcement learning methods for the CM1SUB Dataset
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For the CM1SUB dataset, the initial version of the RL algorithm showed lower precision

values for the same values of recall The highest value of precision for the RL method
was 0.34 atrecall 0.29. The TF-IDF method achieved precision of 0.5 at recall 0.29.

Another observation we made was that on both datasets, the initial RL method
demonstrated a narrower corridor of precision-recall values. For Pine, the precision
ranged from 0.41 up to 0.67; for CM1SUB, the precision ranged from 0.12 up to 0.32.
This led us to believe that the RL method mamntains a “narrower focus” compared to TF-
IDF. Further investigation of the algorithm accentuated the importance of the “matching
neighborhood function.” We observed the direct effect of the way the textual
neighborhoods are matched on the quality of candidate links. The pseudo code presented
mn Listing 6.1 displays, in lne 12, the call to the neighborhood matching function.

After careful consideration and analysis, we decided to utilize ¢/-idf weight of the terms in
establishing matches between textual neighborhoods (Formula 6.4). Intutively, it makes
sense that two textual segments, ie., neighborhoods, sharing a number of terms with high
tf-idf weight, may in fact have a strong link between them. The results for the improved
Reinforcement Learning algorithm are presented in the next sections.

6.2.2 Reinforcement Learning on Pine

Figure 6.6 presents the precision-recall curve for the RL and TF-IDF methods for the
Pine dataset.
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Figure 6.6 Precision-recall curves for TF-IDF and reinforcement
learning methods for the Pine method
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The RL method demonstrates higher precision values than TF-IDF for the same values of
recall. The highest precision for RL method is 0.84 at recall 0.24. As we can see in
Figure 6.6, the highest precision-recall value in RL is at the same position as in TF-IDF.

By inspecting other values of the precision-recall graph, we see the RL method produced
a more focused result. The lowest precision returned by the RL method is 0.65 at recall
0.52. The comparable result for TF-IDF achieves precision 0.65 at recall 0.4. The quality
of candidate links produced by the RL method is better; the RL achieves higher precision
than TF-IDF for the same recall values.

For the Pine dataset, at recall of 0.42 the RL method achieves precision of 0.73. As we
can see from Table 2 in Appendix A, the RL method filtered at 0.25 suggested 141 links.
The number of correctly identified links was 103. The total number of correct candidate
lnks for the Pine dataset is 248. The 103 correctly suggested links out of a total of 248
equates to 0.42 recall.

The TF-IDF method at 0.20 filtering on the Pine dataset suggests 162 links; 106 links are
correctly identified. 106 out 248 is 0.42 recall Having similar recall values, the two
methods achieved different precision: the TF-IDF method achieves 0.65 (0.65= 106/162);
the RL method achieves 0.73 (103/141). The RL method retrieves a higher number of
relevant documents compared to the TF-IDF method.

To evaluate any statistical difference between the two methods, the recall and precision
numbers were compared on the overlapping recall value range. For the Pine dataset, the
TF-IDF method covered recall values from O to 1, while the RL method covered recall
values from 0.23 to 0.52. Using the recall point from the RL method, the precision values
were iterpolated for the TF-IDF method. Twenty recall values and twenty precision
values for TF-IDF and RL were used to define the null hypothesis and alternative
hypotheses for the results:
Hy: There is no difference between the precision values of the TF-IDF
mterpolated precision-recall graph compared to the precision values for the RL
method’s precision-recall graph.
H;: There is a difference between the precision values of the TF-IDF mterpolated
precision-recall graph compared to the precision values for the RL method’s
precision-recall graph.
The Wilcoxon Signed Ranked method was used to evaluate the null hypothesis. The
critical value for Zgiticar test was £1.96 at confidence level oo = 0.05. The results of the
calculations produced the following values:

e W.=-205,
e W.,.=20,
o 7=-382.

Since Z < Zritical, the null hypothesis was rejected. This left the conclusion that there is a
statistically significant difference between the precision values of the two methods.
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6.2.3 Reinforcement Learning on CM1SUB

The RL method applied on the CM1SUB dataset produced results similar to the results
obtamed on the Pmne dataset. Figure 6.7 shows the precision-recall values for the RL
method compared to the precision-recall values for the TF-IDF method using the
CMISUB dataset.
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\

0.8 )

Precision
o o
H [e)}

-

ﬂ

1Pz

\
-y
= ~ _
0.2 —~_
N
«
O T T T T 1
0 0.2 0.4 0.6 0.8 1
Recall
= == TF-IDF — RL

Figure 6.7 Precision-recall curves for TF-IDF and reinforcement learning
methods for the CM1SUB

As shown in Figure 6.7, the pomts in the Precision-recall plane for the RL method have
higher precision values than the points for the TF-IDF method. The RL method reaches a
precision of 0.61 at recall of 0.24. The TF-IDF method reaches a precision of only 0.5 at
a 0.24 recall value.

When comparing recall and precision values for the RL method, recall values grow to
0.38 as precision drops to 0.39. The RL method results also cluster in the area from recall
0.39 and precision 0.39 up to precision value 0.61 at recall 0.24. These values in dicate
the RL method does target the relevant candidate links.

For the CM1SUB dataset, the recall and precision numbers were compared between the
two overlapping recalls to confrm any statistical difference between the two methods.
With values similar to those for the Pine dataset, the RL method covers a limited range of
recall values 0.28 to 0.34.
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The precision values for the TF-IDF method were interpolated using 20 recall values and
20 precision values for TF-IDF and RL. The null hypothesis and alternative hypotheses
were defined as follows:
Hy: There is no difference between the precision values of the TF-IDF
mterpolated precision-recall graph compared to the precision values for the RL
method’s precision-recall graph.
Hj: There is a difference between the precision values of the TF-IDF interpolated
precision-recall graph compared to the precision values for the RL method’s
precision-recall graph.
The Wilcoxon Signed Ranked method was also used to evaluate the null hypothesis as
was done previously for the Pine dataset. The critical value for Zciticar test was found to
be +£1.96 at confidence level o = 0.05. The calculations produced the following values for
W., Wiand Z :

e W.=-153,
e W.,=185,
o 7=-307.

Since our Z < Zgitical, as found previously for the Pine dataset, the null hypothesis must
also be rejected. This left us to conclude that there is a statistically significant difference
between the precision values of the TF-IDF and RL methods on CM1SUB.

6.2.4 Observations

In light of the results obtained from the experiments, we were able to make several
mteresting observations.

Typically, when we consider a precision-recall curve, we observe three possible
outcomes: high recall values and low precision; high precision and low recall; and values
in between these two extremes [53], [15],[9].

High precision and low recall implies that we accurately retrieved a small fraction of the
required documents, but not most of them. Low precision and high recall implies that we
retricved most of the required documents, but at the same time, we retriecved more
unrelated documents as well.

Ideally, when we issue a query we would like to retrieve all the correct documents and no
unrelated items. This ideal scenario should provide high recall and high precision values;
our precision-recall curve should reside in the upper right area of the graph as shown in
Figure 6.8. We would like our precision recall curve to resemble the ideal shape, ie.
move the top right corner of the precision recall graph and raise the lower boundaries on
recall and precision values.
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Figure 6.8 Precision-recall curves ideal vs. typical

For both datasets, the RL method demonstrated higher precision values than the TF-IDF

method for the same recall values. For the

Pine dataset, the RL method reached precision

value 0.65 at recall 0.52. The TF-IDF method only reached precision value 0.52 at recall

0.52.

We observed a similar difference in precision between the RL and TF-IDF methods using
the CM1SUB dataset. The RL method reached precision 0.61 at recall of 0.24, while TF-

IDF reached precision 0.5 at recall of 0.24.

It should be noted that the RL method did not cover the whole spectrum of recall or
precision values. The minimum recall for RL on Pine is 0.23; the maximum recall for RL
on Pine is 0.52. The mmnimum precision for RL on Pine is 0.65; the maximum precision

for RL on Pine is 0.84.

A precision-recall curve for the RL method using the CM1SUB dataset was also limited

by min/max values in recall and precision.

For CMI1SUB, the minimum recall value for

RL is 0.24; the maximum recall was 0.38. The minimum precision value for RL was

0.39, the maximum was 0.61.

The precision-recall data points for the RL method on both datasets exhibited a more
focused result, compared to the TF-IDF method. However, the TF-IDF method did reach

values close to 1 n recall and precision.
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At the same time, when TF-IDF recall reaches to 1, precision drops to almost 0. The
same is true for precision: when precision reaches 1, the recall drops close to 0. The RL
method recall does not drop below 0.23 for Pine and produces recall higher than 0.24.
Also, the lower boundaries for precision on the RL method for the Pine and CM1SUB
datasets were 0.37 and 0.39, respectively.

One explanation for the observed trends using the RL method is that the common textual
segments in two compared documents contribute significantly to promoting a possible
link between the two documents. In other words, the candidate links suggested by the RL
method shared common textual segments. This is why the higher precision results are
produced in the RL method on both datasets.

The upper boundary on precision for RL for both Pine and CM1SUB datasets is 0.84 and
0.61, respectively. This indicates that having common segments between textual
documents is not enough to establish a true link between them. If the RL method links the
documents with common segments, the upper boundary on the precision indicates that
some documents sharing textual segments may not have a logical link between them. For
example, the RL method suggested a link between high level document F6.txt and low
level UC-F1.txt as shown in Figure 6.9.

@
b

I | Fatxt - Notepad - =1

Bie (Edit Fommt Vs (Halp

Fh. If a folder is not empty and the user prompts to delete the fnlder, the systen shall
izsue a warning and allow the user to choose uwhether to delete the folder or Peturn to the
folder list.

7 UC-FLixt - Notepad jﬁﬁ#| = L_J”l

FI[E Edit Format View Help

UG-F1™

Use Case Mame Create folders

Summary The user creates a new folder to store mail.

Actor Pine user

Pre—condition The user logs in to the pine system.

Use Case ID UC.F.1

Description 1. The system displays a listing of all available mail messages.
(2. The user views the list of all the available folders.

3. The user creates a new folder to store mail. N
4. A new folder is created and added to the existing list. |
5. A list of awvailable foldersCincluding the new one)> is displaved.
filternatives If a user creates a new folder which has the same name as any of the existing
folders, the system issues a warning message and does not allow same name. I
Post-condition A new foldey is created and added to the existing list.

Figure 6.9 Two documents sharing common segments

By tracing the agents, we can see that the suggested link came as the result of a common
segment in F6.txt and UC-F1.txt: “the system shall issue a warning.”

Even though the wording of the segment is the same m both documents, the information
carried by this common segment is not sufficient to link the documents. This suggests
that not all common textual segments are “created equal.”
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At the same time, the lower boundary on the RL method’s precision for Pine and
CMI1SUB datasets does not fall below 0.65 and 0.39, respectively. This fact suggests that
the common segments play an important role in identifying correct candidate links
between high and low level documents. The portion of the relevant documents returned
by the RL method did not fall below 0.65 and 0.39 for Pine and CMI1SUB datasets
respectively.

With the lower boundaries on precision, the RL method reaches the upper boundaries for
recall (0.52 and 0.38). This indicates that the common textual segments may not
necessarily uncover all possible ways of linking the documents.

6.2.5 Hard Traces

To evaluate the value of discovering common textual segments using the RL method, we
compared the quality of candidate links on the Web Archive tool (WARC) dataset [54].
Figure 6.10 Precision-recall curve for WARC. shows precision-recall curves for the TF-
IDF and RL methods on the WARC dataset.
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Figure 6.10 Precision-recall curve for WARC.

As shown in Figure 6.10, the points in the precision-recall curve for the RL method are
gathered around the recall value of 0.23 and the precision varies from 0.49 to 0.72. The
RL method did not demonstrate a significant performance gain with respect to the TF-
IDF method. Only on one pomt (precision 0.72, recall 0.23) did the RL curve exceed TF-
IDF’s performance; the interpolated value for TF-IDF there is precision of 0.70 at recall
of 0.23. Yet, similar to the results on Pine and CMI1SUB, the RL method demonstrated
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focused results: the recall ranged from 0.23 to 0.26 and precision ranged from 0.49 to
0.72.

What interested us in this set of results was the performance on the “hard traces.”
According to Gibiec, Czauderna, Cleland-Huang, the hard traces exhibit average
precision less than 10% and occur when documents do not share common terms or
synonyms in a thesaurus [55]. The RL method was able to locate some of the hard traces
with 100% recall and precision. For example, table A.3 in the appendix shows 100%
recall and precision for FR30.txt, FR33.txt, and FR38.txt. Yet, the RL method completely
missed some of the hard traces. If we analyze the “completely” missed links, we can see
that the documents comprising the link shared very few common terms. An example of
such documents is FO4.txt which has the following low level documents in the answer
set: SRSO8.txt, SRS09, and SRS10.txt. By zooming further into the content of the
documents (Figure 6.11), we see only a single pair of terms common between the two
documents.
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SRS 8 - Each WARC-record shall be accessible via a peer C class
of the same name.

Figure 6.11 Two hard trace documents from WARC dataset comprising missed link

At the same time, the RL method did pick up the documents that comprise the hard to
trace links and share common textual segments. Figure 6.12 shows documents FR30.txt
and SRS49.txt sharing several common textual segments.

FR 30 - It shall be possible to collect arbitrary web content, such as html files. ﬁ '
images etc. (for example from a web server document root directory), and write =
the data to WARC files

| ) SRs3.6t - Notepad T eS|

[ Frle Edit Fﬁll’ﬂi‘l \'lan Help

SRS 49 - A set of command line tools and an API incorporating libwarc shall

|| enable the collection of online documents, such as html and embedded files,
etc., and write them to valid WARC- records.

Figure 6.12 Two hard trace documents from WARC dataset comprising link discovered by the RL
method.
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6.3 Future Work

Comparing RL to TF-IDF, which links the documents based on all common terms and
theirr weight, the RL method promotes the links between documents with common terms
located close to each other. In other words, the RL method identifiecs common textual
segments between documents, and suggests links between such documents. By doing so,
the RL method outperforms the TF-IDF method for the same recall values. RL’s higher
precision at the same recall rate provides a human analyst with a more compact and
focused collection of candidate links.

Considering the encouraging results from the RL method, future work can be directed to
mcorporate the advantages that the RL method offers. Future work will incorporate a
feedback mechanism similar to the one in Mencer’s work [49]. Feedback may improve
the accuracy of the generated candidate links.

Also, combining the feedback with personalized filtering, similar to Seo’s work [45],
should definitely affect the accuracy of the candidate links. A part of speech tagging or
noun-verb phrasing technique [27] shall also be considered in future work. By
classifying terms in textual documents, we can amplify the importance of one type of
textual segment over others.
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Appendix

Table 0.1. Detailed results for the TF-IDF and pheromone swarm methods on the Pine
and CM1 datasets

Pine CM-1

TF-IDF TF-IDF

Threshold  Recall Precision F F2 DiffAR  MAP Threshold Recall Precision F F2 DiffAR  MAP
0.1 0.72 0.48 0.58 0.66 0.18 0.75 0.1 0.82 0.08 0.14 0.28 0.09 0.16
0.2 0.43 0.65 0.51 0.46 0.25 0.58 0.2 0.50 0.19 0.27 0.37 0.10 0.20
0.3 0.24 0.82 0.37 0.28 0.41 0.38 0.3 0.25 0.32 0.28 0.26 0.22 0.15
0.4 0.15 0.97 0.27 0.19 0.55 0.27 04 0.09 0.31 0.14 0.10 0.34 0.06
0.5 0.08 0.95 0.15 0.10 0.61 0.16 0.5 0.03 0.45 0.05 0.03 0.47 0.02
0.6 0.04 1.00 0.08 0.05 0.69 0.08 0.6 0.01 0.57 0.02 0.01 0.66 0.01
0.7 0.02 1.00 0.03 0.02 0.75 0.04 0.7 0.00 0.50 0.01 0.00 0.75 0.00
0.8 0.00 1.00 0.01 0.01 0.80 0.00

Simple Swarm Simple Swarm

Threshold  Recall Precision F F2 DiffAR  MAP Threshold  Recall Precision F F2 DiffAR  MAP
0.1 0.86 0.27 0.41 0.60 0.46 0.76 0.1 0.80 0.04 0.07 0.15 0.28 0.23
0.2 0.78 0.40 0.53 0.66 0.41 0.74 0.2 0.66 0.05 0.10 0.20 0.23 0.22
03 0.65 0.52 0.58 0.62 0.44 0.67 0.3 0.50 0.07 0.12 0.22 0.19 0.21
0.4 0.55 0.63 0.59 0.57 0.46 0.61 04 0.41 0.08 0.14 0.23 0.24 0.19
0.5 0.48 0.71 0.58 0.52 0.57 0.57 0.5 0.35 0.11 0.16 0.24 0.23 0.18
0.6 0.40 0.76 0.53 0.44 0.66 0.52 0.6 0.26 0.13 0.17 0.22 0.34 0.16
0.7 0.34 0.81 0.48 0.39 0.72 0.47 0.7 0.22 0.15 0.17 0.20 0.46 0.15
0.8 0.28 0.83 041 0.32 0.85 0.41 0.8 0.19 0.17 0.18 0.19 0.57 0.14
0.9 0.22 0.86 0.35 0.26 0.93 0.36 0.9 0.16 0.19 0.17 0.16 0.72 0.13

Pheromone Swarm 6=1 Pheromone Swarm with §=1

Threshold  Recall Precision F F2 DiffAR  MAP Threshold Recall Precision F F2 DiffAR ~ MAP
0.1 0.63 0.54 0.58 0.61 0.38 0.68 0.1 0.58 0.07 0.13 0.24 0.27 0.14
0.2 0.46 0.63 0.53 0.49 043 0.57 0.2 0.44 0.10 0.17 0.27 0.23 0.15
0.3 0.33 0.64 0.44 0.37 0.58 0.48 0.3 0.37 0.12 0.18 0.26 0.21 0.16
0.4 0.28 0.66 0.39 0.31 0.64 0.45 04 0.30 0.13 0.19 0.24 0.31 0.14
0.5 0.25 0.69 0.37 0.29 0.73 0.42 0.5 0.26 0.15 0.19 0.23 0.35 0.15
0.6 0.23 0.73 0.35 0.27 0.76 0.40 0.6 0.23 0.17 0.19 0.21 041 0.15
0.7 0.21 0.78 0.33 0.24 0.89 0.39 0.7 0.20 0.18 0.19 0.20 0.57 0.15
0.8 0.19 0.84 0.31 0.23 0.93 0.37 0.8 0.19 0.20 0.19 0.19 0.62 0.14
0.9 0.18 0.87 0.30 0.22 0.95 0.37 0.9 0.16 0.21 0.18 0.17 0.82 0.14

Pheromone Swarm §=3 Pheromone Swarm with §=3

Threshold  Recall Precision F F2 DiffAR  MAP Threshold Recall Precision F F2 DiffAR  MAP
0.1 0.59 0.54 0.56 0.58 0.44 0.66 0.1 0.56 0.08 0.13 0.25 0.26 0.22
0.2 0.42 0.62 0.50 0.45 0.52 0.54 0.2 0.40 0.10 0.16 0.25 0.27 0.20
0.3 0.35 0.67 0.46 0.39 0.60 0.51 0.3 0.34 0.12 0.18 0.25 0.28 0.19
0.4 0.30 0.74 0.42 0.34 0.70 047 04 0.30 0.14 0.19 0.25 0.29 0.18
0.5 0.27 0.77 0.40 0.31 0.75 045 0.5 0.27 0.16 0.20 0.24 0.35 0.17
0.6 0.24 0.81 0.37 0.28 0.88 0.42 0.6 0.25 0.19 0.21 0.23 0.40 0.17
0.7 0.22 0.84 0.34 0.25 0.93 0.40 0.7 0.22 0.21 0.21 0.22 0.50 0.16
0.8 0.20 0.87 0.32 0.23 0.95 0.37 0.8 0.18 0.20 0.19 0.19 0.69 0.14
0.9 0.19 0.89 0.31 0.23 0.98 0.37 0.9 0.17 0.22 0.19 0.18 0.77 0.13

Pheromone Swarm 6=5 Pheromone Swarm with §=5

Threshold  Recall Precision F F2 DiffAR  MAP Threshold Recall Precision F F2 DiffAR  MAP
0.1 0.52 0.52 0.52 0.52 0.45 0.58 0.1 0.48 0.08 0.13 0.23 0.27 0.21
0.2 0.38 0.63 0.48 0.41 0.52 0.49 0.2 0.38 0.11 0.17 0.25 0.25 0.19
0.3 0.33 0.69 045 0.37 0.60 0.46 0.3 0.31 0.12 0.18 0.24 0.25 0.18
0.4 0.28 0.71 0.40 0.31 0.67 0.41 04 0.28 0.14 0.18 0.23 0.31 0.18
0.5 0.24 0.71 0.35 0.27 0.75 0.38 0.5 0.24 0.15 0.18 0.21 0.39 0.16
0.6 0.23 0.77 0.35 0.26 0.79 0.38 0.6 0.22 0.16 0.18 0.20 0.55 0.16
0.7 0.21 0.81 0.34 0.25 0.84 0.37 0.7 0.20 0.19 0.20 0.20 0.65 0.15
0.8 0.19 0.85 0.31 0.23 0.93 0.36 0.8 0.18 0.20 0.19 0.18 0.77 0.14
0.9 0.18 0.86 0.30 0.21 1.00 0.33 0.9 0.17 0.21 0.19 0.17 0.86 0.13
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Table 0.2. Detailed results for the TF-IDF and RL methods on the Pine and CM1SUB

datasets
Plirr= CMsUe
TF-IOF TF-IOF
Thieshald Recal Precizion 1 Pewmed  Relevart  Answerset Threshiold Piecision  Retwned  Felevant  Ariswerset
bl 0.552 K] 23z 248 248 o 0.05 833 45 45
o5 ikt D304 =8 Eeal 248 0.05 0101 414 42 45
o1 0722 0481 372 74 243 8] i 206 7 45
e o524 0.5es 230 130 243 a1s ozss Rl 28 45
0z 0427 0854 162 06 243 0z 0365 52 g 45
o5 0302 07 105 75 248 025 05 28 “ 45,
03 0.235 nEms 72 59 243 03 0.556 16 o 45
a3 013 D322 51 47 248 035 o643 i 3 45
0.4 0153 0974 39 38 248 04 0.833 8 5: 45
045 i 0964 28 F1d 248 0,45 1 3 3 45,
o5 008 k- 21 n 2485 as I z 5 45
ass ags2 1 3 3 248 0.55 a il a 45
08 0.04 1 10 0 248 06 0 0 o 45
05 0036 1 = 8 248 0,65 o 1] o 45,
ot ulny 1 4 i 248 v 0 D a 45
aws ognd 1 1 1 248 075 a i} i 45
0.8 0.004 1 1 1 243 [ik:8 0 ‘a o 45
085 a o a o 248 0.85 a o o 45,
0.9 o D 0 o 243 08 a 0 a 45
ass i} i) a 0 248 0.95 a i 0 45
AL
Thiesheld Recal Pracision  Fetumed  Feleyant  Answerset Fecal Precision  Fewned  Relevant  Answerset
005 frky} 0.6 136 126 248 038 039 aq. R 45
01 048 (o=} RE 15 248 03 048 ki 17 45
015 044 a7 185 0 243 0.36 3z 1w 45
0z 043 07z 7 08 zd8 ol a0 1= 45
0.25 042 073 14 03 243 24 & 45
03 038 a7 1?3 95 248 & 15 45
0.35 0.37 075 122 9z 243 3 27 1.5 45
04 035 0,74 7 &7 248 .33 27 15 45,
045 034 3,74 14 a4 248 033 26 15 45
os o3t v 106 ki 243 oA st ° 45
0.55 03 074 01 75 248 029 24 1 45
0B 023 0,75 34 Il 248 0. 23 3 45
065 0E8 [1,75 a3 63 248 027 2 hrd 45
o7 D2y [ui:4 ‘85 B 248 az7 2 2 45
0.7 0.27 08 84 67 245 0:27: 21 1z 45
oa 026 w62 74 B85 248 027 2 12 45,
n.es 025 n.&s 76 &5 243 027 El w2 a5
03 028 .83 & B3 248 o2y 20 © 45
0.95 024 0.6z 73 B0 245 02T 13 12 45
1 023 rad 69 58 248 1 o2y =R 14 45
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Table 0.3. Detailed results for the TF-IDF and RL methods on the Pine and CM1SUB

datasets
TFIDF RL
High  Average Average High  Awverage Average

Level Doc  Recall  Precision Level Doc  Recall  Precision
FROZIxt  0.30 0.67 FROZ:Ixt 100 0.75
FRO4.tit  0.10 0.01 FRO4.tit  0.00 0.00
FROS:txt  0.08 0.00 FROSxt  0.00 0.00
FROGtkt  0.22 0.06 FROGtxt  0.00 0.00
FROBIxt  D.20 0.02 FROBAxt  D.00 0.00
FRILtit  0.10 0.01 FRILtit  0.00 0.00
FR1Zixt 015 0.01 FR1Zixt  0.00 0.00
FRIS.txt  0.30 0.08 FRIStxt  0.00 0.00
FRIBixt  0.20 0.03. FR1Bixt  0.00 0.00
FR20.txt 013 0.01 FR20.txt 0.00 0.00
FRI7Axt 0.3 0.05 FRZ7Axt  0.00 0.00
FR2ZE.tkt  0.20 0.02 FR2Etxt  0.00 0.00
FR29ixt  0.20 0.03 FR29ixt .00 0.00
FR30Otkt  0.35 0.09 FR30.tit .00 100
FR2ZIxt 040 0.10 FR23ixt  1.00  1.00
FR34tit  0.30 0.08 FR34tit 0.1 0.11
FR3gaxt 040 0.09 FR3gixt 100 1.00
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